Answer:
Oxygen is in group 16/VIA, which is called the chalcogens, and members of the same group have similar properties. Sulfur and selenium are the next two elements in the group, and they react with hydrogen gas (H2) in a manner similar to oxygen.
Explanation:
Answer:
92gm
Explanation:
Atomic mass of Mg=24g=1 mole of Mg
∴ 24g =1 mole of Mg contain 6.022×10^23 atom
∴ 6gm contains 246.022×1023×6
=4×6.022×10^23 atoms
Now according to question, there are 6.022×1023 atoms of Na
23gm of Na contains 6.022×10^23 atoms
∴6.022×4×10^23 atoms of Na weighs 23×6.022×10^23×4/6.022×10^23⇒92gm
I know what you're asking but I don't think the question is stated properly. Technically, an atom will not join with an "oxide" ion; i.e., the oxide ion is an atom of oxygen to which two electrons have been added. An oxide ion will add to 2 K ions or 1 Ca ion. The K ion has lost just one electron so it takes two of them to equal the 2- charge on the oxide ion whereas the Ca ion has lost two electrons and it takes only one of them to equal the charge on the oxide ion.
Answer:
In general, liquids tend to get “thinner” when their temperature increases. For example, honey and oil tend to flow better at higher temperatures. Therefore, increasing temperature decreases viscosity. In general, the liquids tend to expand when their temperature increases
Explanation:
Answer:
Reagent O₂ will be consumed first.
Explanation:
The balanced reaction between O₂ and C₄H₁₀ is:
2 C₄H₁₀ + 13 O₂ → 8 CO₂ + 10 H₂O
Then, by reaction stoichiometry, the following amounts of reactants and products participate in the reaction:
- C₄H₁₀: 2 moles
- O₂: 13 moles
- CO₂: 8 moles
- H₂O: 10 moles
Being:
- C: 12 g/mole
- H: 1 g/mole
- O: 16 g/mole
The molar mass of the compounds that participate in the reaction is:
- C₄H₁₀: 4*12 g/mole + 10*1 g/mole= 58 g/mole
- O₂: 2*16 g/mole= 32 g/mole
- CO₂: 12 g/mole + 2*16 g/mole= 44 g/mole
- H₂O: 2*1 g/mole + 16 g/mole= 18 g/mole
Then, by reaction stoichiometry, the following mass quantities of reactants and products participate in the reaction:
- C₄H₁₀: 2 moles* 58 g/mole= 116 g
- O₂: 13 moles* 32 g/mole= 416 g
- CO₂: 8 moles* 44 g/mole= 352 g
- H₂O: 10 moles* 18 g/mole= 180 g
If 78.1 g of O₂ react, it is possible to apply the following rule of three: if by stoichiometry 416 g of O₂ react with 116 g of C₄H₁₀, 62.4 g of C₄H₁₀ with how much mass of O₂ do they react?

mass of O₂= 223.78 grams
But 21.78 grams of O₂ are not available, 78.1 grams are available. Since you have less mass than you need to react with 62.4 g of C₄H₁₀, <u><em>reagent O₂ will be consumed first.</em></u>