144 mL of fluorine gas is required to react with 1.28 g of calcium bromide to form calcium fluoride and bromine gas at STP.
<h3>What is Ideal Gas Law ? </h3>
The ideal gas law states that the pressure of gas is directly proportional to the volume and temperature of the gas.
PV = nRT
where,
P = Presure
V = Volume in liters
n = number of moles of gas
R = Ideal gas constant
T = temperature in Kelvin
Here,
P = 1 atm [At STP]
R = 0.0821 atm.L/mol.K
T = 273 K [At STP]
Now first find the number of moles
F₂ + CaBr₂ → CaF₂ + Br₂
Here 1 mole of F₂ reacts with 1 mole of CaBr₂.
So, 199.89 g CaBr₂ reacts with = 1 mole of F₂
1.28 g of CaBr₂ will react with = n mole of F₂

n = 0.0064 mole
Now put the value in above equation we get
PV = nRT
1 atm × V = 0.0064 × 0.0821 atm.L/mol.K × 273 K
V = 0.1434 L
V ≈ 144 mL
Thus from the above conclusion we can say that 144 mL of fluorine gas is required to react with 1.28 g of calcium bromide to form calcium fluoride and bromine gas at STP.
Learn more about the Ideal Gas here: brainly.com/question/20348074
#SPJ4
Answer:
The answer is "
".
Explanation:
Please finds the complete question in the attached file.


The mass of acetone to be weighed is 
Answer:
1 mole of a gas would occupy 22.4 Liters at 273 K and 1 atm
Explanation:
An ideal gas is a set of atoms or molecules that move freely without interactions. The pressure exerted by the gas is due to the collisions of the molecules with the walls of the container. The ideal gas behavior is at low pressures, that is, at the limit of zero density. At high pressures the molecules interact and intermolecular forces cause the gas to deviate from ideality.
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P * V = n * R * T
In this case:
- P= 1 atm
- V= 22.4 L
- n= ?
- R= 0.082

- T=273 K
Reemplacing:
1 atm* 22.4 L= n* 0.082
*273 K
Solving:

n= 1 mol
Another way to get the same result is by taking the STP conditions into account.
The STP conditions refer to the standard temperature and pressure. Pressure values at 1 atmosphere and temperature at 0 ° C (or 273 K) are used and are reference values for gases. And in these conditions 1 mole of any gas occupies an approximate volume of 22.4 liters.
<u><em>1 mole of a gas would occupy 22.4 Liters at 273 K and 1 atm</em></u>
4-ethyl-3-methyl 1 hexane