Answer:
The equation is Fe₂O₃ + CO ⇒ Fe + CO₂.
The balanced reaction equation is Fe₂O₃ + 3CO ⇒ 2Fe + 3CO₂.
Explanation:
First, we have to write our equation. It's actually pretty straightforward - first we look for our reactants (looks like it's Fe₂O₃ and CO), then we look for our products (Fe and CO₂). Then, we have to balance it so that both sides have the same number of both element.
Currently, we have the equation Fe₂O₃ + CO ⇒ Fe + CO₂. There are 2 Fe atoms, 4 O atoms, and 1 C atom on the left side. There is 1 Fe atom, 2 O atoms, and 1 C atom on the right side.
First thing we can do is give our Fe on the right side a coefficient of 2. This will make it equivalent to the 2 Fe atoms on the left side:
Fe₂O₃ + CO ⇒ 2Fe + CO₂
Next, we need to make sure that we have the same number of C and O atoms on each side. This takes a little bit of thinking, but what we have to do is give CO a coefficient of 3 and CO₂ a coefficient of 3. This gives us 6 O atoms on the left side (when we include the O₃) and 6 O atoms on the right side (since there are 3 O₂ atoms and 3 times 2 is 6). Here's what that looks like:
Fe₂O₃ + 3CO ⇒ 2Fe + 3CO₂
And that's how I balanced the equation. It can be confusing, but with enough practice, it will get easier and easier. :)
Answer: 1.4x10-3 g N2O4
Explanation: First convert molecules of N2O4 to moles using Avogadro's Number. Then convert moles to mass using the molar mass of N2O4.
9.2x10^18 molecules N2O4 x 1 mole N2O4 / 6.022x10²³ molecules N2O4
= 1.53x10-5 moles N2O4
1.53x10-5 moles N2O4 x 92 g N2O4/ 1 mole N2O4
= 1.4x10-3 g N2O4
Add an alkaline compound to raise the pH to 7.2.
The correct answer to your question is: <span>C) tin (IV) bromide, SnBr₄</span>
To solve this problem we just need to use the rule of three:
150g..................395.1J
450g................xJ
x = 450*395.1/150 = 1185,3J
450.0 g of the substance completely reacted with oxygen will produce 1.1853 kJ(<span>kiloJoule</span>)