Answer:
d = <23, 33, 0> m
, F_W = <0, -9.8, 0>
, W = -323.4 J
Explanation:
We can solve this exercise using projectile launch ratios, for the x-axis the displacement is
x = vox t
Y Axis
y =
t - ½ g t²
It's displacement is
d = x i ^ + y j ^ + z k ^
Substituting
d = (23 i ^ + 33 j ^ + 0) m
Using your notation
d = <23, 33, 0> m
The force of gravity is the weight of the body
W = m g
W = 1 9.8 = 9.8 N
In vector notation, in general the upward direction is positive
W = (0 i ^ - 9.8 j ^ + 0K ^) N
W = <0, -9.8, 0>
Work is defined
W = F. dy
W = F dy cos θ
In this case the force of gravity points downwards and the displacement points upwards, so the angle between the two is 180º
Cos 180 = -1
W = -F y
W = - 9.8 (33-0)
W = -323.4 J
-- Any object has gravitational potential energy relative to any place
lower than where the object is. The stove in the kitchen has potential
energy relative to the basement floor.
-- If an object is not moving, then it has no kinetic energy. The stove has
no kinetic energy unless you throw it or drop it out of a window.
Answer:
4.3 m/sec
Explanation:
Here height of cliff = y = 37.6 m
Gravitational acceleration = g = 9.8 m/sec2
vi = 0 m/s
Let's find the time which the diver will take if jumps from there!
Using formula
y = vit+1/2gt2
==> 37.6= 0 + 0.5 ×9.8×
==>
=
==> t = 2.8 sec
In this time the diver has to cover a horizontal distance of 12.12 m
If x = 12.12 m is the horizontal distance to be covered then using
x= Vx × t
==> Vx = x/t
==> Vx= 12.12/2.8 = 4.3 m/s
Answer:
Average mass of acar in the US (in kg) = 1440 kg
Explanation:
Average mass of a car in the US (in g) = 1.440 × 10⁶ g
Mass in kg:
