The ocular lens or eyepiece lens
Answer:
W
Explanation:
= Temperature of the room = 22.0 °C = 22 + 273 = 295 K
= Temperature of the skin = 33.0 °C = 33 + 273 = 306 K
= Surface area = 1.50 m²
= emissivity = 0.97
= Stefan's constant = 5.67 x 10⁻⁸ Wm⁻² K⁻⁴
Rate of heat transfer is given as


W
Answer:
The average kinetic energy of the molecules increases
Explanation:
The temperature of a substance is proportional to the average kinetic energy of the particles in the substance.
In fact, for an ideal gas for instance, there is the following relationship:

where
KE is the average kinetic energy of the particles
k is the Boltzmann's constant
T is the absolute temperature of the gas
When we heat a substance (such as the flask of water in this problem), we are giving thermal energy to the particles of the substance; therefore, these particles will move faster on average, so their kinetic energy will increase (and the temperature of the substance will increase as well).
The car's average acceleration would be 1.25m/s^2 or 1.25meters/second/second. That looks to be the fourth one you've listed.
Answer:
a)
, b) 
Explanation:
The magnitude of torque is a form of moment, that is, a product of force and lever arm (distance), and force is the product of mass and acceleration for rotating systems with constant mass. That is:



Where
is the angular acceleration, which is constant as torque is constant. Angular deceleration experimented by the unpowered flywheel is:


Now, angular velocities of the unpowered flywheel at 50 seconds and 100 seconds are, respectively:
a) t = 50 s.


b) t = 100 s.
Given that friction is of reactive nature. Frictional torque works on the unpowered flywheel until angular velocity is reduced to zero, whose instant is:


Since
, then the angular velocity is equal to zero. Therefore:
