Answer:
₈₆²²²Rn → ₈₄Po²¹⁸ + H₂⁴
Explanation:
The given nuclear reaction shows alpha decay.
₈₆²²²Rn → ₈₄Po²¹⁸ + H₂⁴
Properties of alpha radiations:
Alpha radiations are emitted as a result of radioactive decay. The atom emit the alpha particles consist of two proton and two neutrons. Which is also called helium nuclei. When atom undergoes the alpha emission the original atom convert into the atom having mass number less than 4 and atomic number less than 2 as compared to parent atom the starting atom.
Alpha radiations can travel in a short distance.
These radiations can not penetrate into the skin or clothes.
These radiations can be harmful for the human if these are inhaled.
These radiations can be stopped by a piece of paper.
₉₂U²³⁸ → ₉₀Th²³⁴ + ₂He⁴ + energy
214.0560
+ 9.3456
=223.4016
Answer:
Graphics can sometimes convey more information in a brief amount of space than an author can explain in a paragraph.
Explanation:
The O atom is sp3 in a water molecule, with two sigma bonds and two lone pairs of electrons like that in water. The steric integer is thus 4, and its structure is tetrahedral.
The C atom is sp hybridised into two identical bonds and two identical bonds in acetylene.
The steric integer is therefore 2 because only sigma bonds are engaged in deciding hybridization, and its structure is linear.
The C atom is sp2 hybridised in ethene with single pi bond and three sigma identical bonds.
Thus the steric integer is 3, and its structure is planar trigonal.
The C atom is sp2 hybridized in ethene, with one pi bond and three sigma identical bonds.
The steric integer would therefore be 3 and its structure is planar trigonal.
The O atom is sp3 in a water molecule with two bond pairs and two lone pairs of electrons like that. The steric integer is thus 4, and its structure is tetrahedral.
The C atom is sp3 in a methane ring, with 4 bond pairs and no solitary pairs of electrons like that. The steric integer is thus 4, and its structure is tetrahedral.
Answer:
0.825 M
Explanation:
The osmotic pressure is a colligative property, that can be calculated using the following expression.
π = M × R × T
where,
π is the osmotic pressure
M is the molarity
R is the ideal gas constant
T is the absolute temperature (24°C + 273 = 297 K)
M = π / R × T = 20.1 atm / (0.08206 atm.L/mol.K) × 297 K = 0.825 M