To calculate percent composition, you first need to find the molar mass of C (carbon), H (hydrogen) and O (oxygen).
C is 12.01
H is 1.00
O is 16
Then multiply each by the number of atoms of each element in the formula (the number that comes after each element in the equation for example C6 means 6 carbon atoms.
C: 12.01 x 6= 72.06
H: 1x12= 12
O: 16x6= 96
Then add them up.
72.06+ 12+ 96= 180.06
Now find the percent composition of carbon.
72.06/ 180.06 x 100= 40.01%
So the answer is C 40%.
Answer:
3AgCl + Na₃PO₄ —> 3NaCl + Ag₃PO₄
The coefficients are 3, 1, 3, 1
Explanation:
From the question given above, the following data were:
Silver chloride reacts with sodium phosphate to yield sodium chloride and silver phosphate. This can be written as follow:
AgCl + Na₃PO₄ —> NaCl + Ag₃PO₄
The above equation can be balanced as follow:
AgCl + Na₃PO₄ —> NaCl + Ag₃PO₄
There are 3 atoms of Na on the left side and 1 atom on the right side. It can be balance by putting 3 in front of NaCl as shown below:
AgCl + Na₃PO₄ —> 3NaCl + Ag₃PO₄
There are 3 atoms of Cl on the right side and 1 atom on the left. It can be balance by putting 3 in front of AgCl as shown below:
3AgCl + Na₃PO₄ —> 3NaCl + Ag₃PO₄
Thus, the equation is balanced.
The coefficients are 3, 1, 3, 1
D. It gives the same results when experiments are repeated
The statement which describes how NO2- reacts in this equilibrium:
<span>H2SO3(aq) + NO2-(aq) HSO3-(aq) + HNO2(aq
is the second option - </span><span>B. as a Brønsted-Lowry base by accepting a proton.
</span>This is because bases take proton H+ in order to become HNO2.