I think the correct answer would be the third option. The reason I2 has a higher melting point than F2 is because I2 possesses a more polarizable electron cloud. I2 contains more electrons than F2 which would result to a stronger intermolecular forces. Having stronger intermoleculer forces would mean more energy is needed to break the bonds so a higher melting point would be observed.
A sodium ion symbol is written as Na^+.
The molar mass of CO2 can be calculated as follows;
CO2 — 12 + (16x2) = 12+ 32 = 44 g
Therefore molar mass of CO2 is 44 g/mol
In 44 g of CO2 there’s 1 mol of CO2
Then 1 g of CO2 there’s 1/44 mol of CO2
Therefore in 78.3 g of CO2 there’s — 1/44 x 78.3 =1.78 mol of CO2
Answer:
The answer to your question is below
Explanation:
a)
Number of atoms = ?
moles of Fe = 4.75
-Use proportions to solve this problem
1 mol of Fe --------------------- 6.023 x 10²³ atoms
4.75 moles --------------------- x
x = (4.75 x 6.023 x 10²³) / 1
x = 2.86 x 10²⁴ / 1
Number of atoms = 2.86 x 10²⁴
b)
Number of moles = ?
moles of 1.058 moles of H₂O
I think this question is incorrect, maybe you wish to know the number of atoms or grams of H₂O.
c)
Number of atoms = ?
moles of Fe = 0.759
1 mol of Fe ------------------ 6.023 x 10²³ atoms
0.759 moles --------------- x
x = (0.759 x 6.023 x 10²³) / 1
x = 4.57 x 10²³ / 1
Number of atoms of Fe = 4.57 x 10²³ atoms
d)
Number of molecules = ?
moles of H₂O = 3.5 moles
1 mol of H₂O ------------------ 6.023 x 10²³ molecules
3.5 moles ------------------ x
x = (3.5 x 6.023 x 10²³) / 1
x = 2.11 x 10²⁴ molecules
Number of molecules = 2.11 x 10²⁴
Answer:
Nitrogen, the next nonmetal, has 5 electrons in the valence shell, so it needs to combine with 3 hydrogen atoms to fulfill the octet rule and form a stable compound called ammonia (NH3).