A non <span>foliated </span>rock has interlocking grains with no specific pattern.
Answer:
C. both forces have the same magnitude
Explanation:
Here the action force is equal to the reaction force in accordance with the Newton's third law of motion.
Also when we apply the conservation of momentum so that the momentum bullet and the momentum of the gun are equal and according to the second law of motion by Newton, we have force equal to the rate of change in momentum.
We have the equation for momentum as:

Newton's second law is Mathematically given as:

Momentum is constant and the reaction time is equal, so the force exerted will also be equal.
If energy could<span> be created or </span>destroyed<span>, all of our ideas of how the world works ... Historically, of course </span>not<span> all the forms of energy were known to begin with. ... too messy or complicated to make sense, we </span>would have<span> had to give up the law. ... </span>can<span> be converted into rest </span>mass<span> and back again (particle physicists </span>do<span> this </span><span>every )</span>
Answer:
67.44 V
Explanation:
Number of turns N =123
Radius = 2.41 cm =0.0241 m
The magnetic field strength increases from 50.9 T to 96.3 T so change in magnetic field dB = 96.3-50.9=45.4 T
Time interval dt = 0.151 sec
We know that the induced emf 
Area 
Putting all these values in emf equation
here negative sign indicates that it opposes the cause due to which it is produced
Answer:
550000000N/m
Explanation:
Given that a copper wire has a radius of 2.9 mm. When forces of a certain equal magnitude but opposite directions are applied to the ends of the wire, the wire stretches by 5.0×10−3 of its original length.
Original length L = 0.005L
the strain = extension/ original length
the strain = 0.005L / L
the strain = 0.005
Young modulus = stress / strain
11 × 10^10 = stress / 0.005
Cross multiply
Stress = 11 × 10^10 × 0.005
Stress = 550 000000 N/m
Therefore, the tensile stress on the wire is 550000000 N/m.