The numerical value of the mean voltage is 25.47 V
To find the numerical value of the mean voltage, V of V(t) = 40 sin(t), we integrate V(t) with respect to t over the interval [0.π]
So,
![V = \frac{1}{\pi } \int\limits^\pi _0 {V(t)} \, dt \\V = \frac{1}{\pi } \int\limits^\pi _0 {40sint} \, dt \\V = \frac{1}{\pi } [-40cost]_{0}{\pi } \\V = \frac{1}{\pi } -[40cos\pi - 40cos0]\\\\V = \frac{1}{\pi } (-[40 X (-1) - 40 X 1})\\V = -\frac{1}{\pi } [-40 - 40]\\V = \frac{80}{\pi } \\V = 25.465 V](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20%5Cint%5Climits%5E%5Cpi%20_0%20%7BV%28t%29%7D%20%5C%2C%20dt%20%5C%5CV%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20%5Cint%5Climits%5E%5Cpi%20_0%20%7B40sint%7D%20%5C%2C%20dt%20%5C%5CV%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20%5B-40cost%5D_%7B0%7D%7B%5Cpi%20%7D%20%20%5C%5CV%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20-%5B40cos%5Cpi%20%20-%2040cos0%5D%5C%5C%5C%5CV%20%3D%20%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20%28-%5B40%20X%20%28-1%29%20-%2040%20X%201%7D%29%5C%5CV%20%3D%20-%5Cfrac%7B1%7D%7B%5Cpi%20%7D%20%5B-40%20-%2040%5D%5C%5CV%20%3D%20%5Cfrac%7B80%7D%7B%5Cpi%20%7D%20%5C%5CV%20%3D%2025.465%20V)
V ≅ 25.47 V
So, the numerical value of the mean voltage is 25.47 V
Learn more about mean volatage here:
brainly.com/question/17928028
Answer:
Step-by-step explanation:
?
Answer:
Undefined
Step-by-step explanation:
If the slope was a horizontal line, then we could say y=2, however, it is only going through the x-axis so it would be x=2, but in terms of y it is undefined.
Answer:
A
Step-by-step explanation:
Substitue 15 into the x value and complete the equation.
This is because 2,280 is the original distance. 15 would be the hours and 60 would be how many miles per hour. So we multiply 15 and 60 and get 900, this is how many total miles they have driven. But when we subtract that number from 2,280, and we get 1,380, this is how many miles they have left.
She has $5.33 left
$9.00
-$3.67
————
$5.33