Answer:
Answer:
safe speed for the larger radius track u= √2 v
Explanation:
The sum of the forces on either side is the same, the only difference is the radius of curvature and speed.
Also given that r_1= smaller radius
r_2= larger radius curve
r_2= 2r_1..............i
let u be the speed of larger radius curve
now, \sum F = \frac{mv^2}{r_1} =\frac{mu^2}{r_2}∑F=
r
1
mv
2
=
r
2
mu
2
................ii
form i and ii we can write
v^2= \frac{1}{2} u^2v
2
=
2
1
u
2
⇒u= √2 v
therefore, safe speed for the larger radius track u= √2 v
The simplified expression should be 3/7
Answer:
A=πr(r+h2+r2)
Step-by-step explanation:
literally just search it up
The complete question is
Find the volume of each sphere for the given radius. <span>Round to the nearest tenth
we know that
[volume of a sphere]=(4/3)*pi*r</span>³
case 1) r=40 mm
[volume of a sphere]=(4/3)*pi*40³------> 267946.66 mm³-----> 267946.7 mm³
case 2) r=22 in
[volume of a sphere]=(4/3)*pi*22³------> 44579.63 in³----> 44579.6 in³
case 3) r=7 cm
[volume of a sphere]=(4/3)*pi*7³------> 1436.03 cm³----> 1436 cm³
case 4) r=34 mm
[volume of a sphere]=(4/3)*pi*34³------> 164552.74 mm³----> 164552.7 mm³
case 5) r=48 mm
[volume of a sphere]=(4/3)*pi*48³------> 463011.83 mm³----> 463011.8 mm³
case 6) r=9 in
[volume of a sphere]=(4/3)*pi*9³------> 3052.08 in³----> 3052 in³
case 7) r=6.7 ft
[volume of a sphere]=(4/3)*pi*6.7³------> 1259.19 ft³-----> 1259.2 ft³
case 8) r=12 mm
[volume of a sphere]=(4/3)*pi*12³------>7234.56 mm³-----> 7234.6 mm³