Answer:
Probability that she or he bought lunch in the cafeteria and chose pizza as an entree = 12/100 =0.12 = 12%
Explanation:
Let number of students be 100.
At Taylor Street School, 40% of the students bought lunch in the cafeteria today
Number of students bought lunch = 100 x 40/100 = 40
Of the students who bought lunch in the cafeteria today, 30% chose pizza as their entree
Number of students bought pizza = 40 x 30/100 = 12.
Probability of an outcome = Number of favorable outcome/ Total number of outcome
Probability that she or he bought lunch in the cafeteria and chose pizza as an entree = Number of students bought pizza/Total number of students
= 12/100 =0.12 = 12%
Probability that she or he bought lunch in the cafeteria and chose pizza as an entree = 12/100 =0.12 = 12%
Answer:
![\boxed{- 12 {s}^{2} + 11st - 2 {t}^{2} }](https://tex.z-dn.net/?f=%20%5Cboxed%7B-%2012%20%7Bs%7D%5E%7B2%7D%20%20%2B%2011st%20-%202%20%7Bt%7D%5E%7B2%7D%20%7D%20)
Step-by-step explanation:
![= > ( - 3s + 2t)(4s - t) \\ \\ = > - 3s(4s - t) + 2t(4s - t) \\ \\ = > ( ( - 3s) \times 4s )- (( - 3s) \times t) + (2t \times 4s) - (2t \times t) \\ \\ = > - 12 {s}^{2} - ( - 3st) + 8st - 2 {t}^{2} \\ \\ = > -12 {s}^{2} + 3st + 8st - 2 {t}^{2} \\ \\ = > - 12 {s}^{2} + 11st - 2 {t}^{2}](https://tex.z-dn.net/?f=%20%3D%20%20%3E%20%28%20-%203s%20%2B%202t%29%284s%20-%20t%29%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%20%20-%203s%284s%20-%20t%29%20%2B%202t%284s%20-%20t%29%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%20%20%28%20%28%20-%203s%29%20%5Ctimes%204s%20%29-%20%28%28%20-%203s%29%20%5Ctimes%20t%29%20%2B%20%282t%20%5Ctimes%204s%29%20-%20%282t%20%5Ctimes%20t%29%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%20%20-%2012%20%7Bs%7D%5E%7B2%7D%20%20-%20%28%20-%203st%29%20%2B%208st%20-%202%20%7Bt%7D%5E%7B2%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%20%20-12%20%7Bs%7D%5E%7B2%7D%20%20%2B%203st%20%2B%208st%20-%202%20%7Bt%7D%5E%7B2%7D%20%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%20%20-%2012%20%7Bs%7D%5E%7B2%7D%20%20%2B%2011st%20-%202%20%7Bt%7D%5E%7B2%7D%20)