A whole number that would support Cindys claim would be 2 because if u do the ,math it would be 8/24 which would be .333 repeating which is simplify to 1/3 and i do not know a number that would not work.
By Euler's method the <em>numerical approximate</em> solution of the <em>definite</em> integral is 4.189 648.
<h3>How to estimate a definite integral by numerical methods</h3>
In this problem we must make use of Euler's method to estimate the upper bound of a <em>definite</em> integral. Euler's method is a <em>multi-step</em> method, related to Runge-Kutta methods, used to estimate <em>integral</em> values numerically. By integral theorems of calculus we know that definite integrals are defined as follows:
∫ f(x) dx = F(b) - F(a) (1)
The steps of Euler's method are summarized below:
- Define the function seen in the statement by the label f(x₀, y₀).
- Determine the different variables by the following formulas:
xₙ₊₁ = xₙ + (n + 1) · Δx (2)
yₙ₊₁ = yₙ + Δx · f(xₙ, yₙ) (3) - Find the integral.
The table for x, f(xₙ, yₙ) and y is shown in the image attached below. By direct subtraction we find that the <em>numerical</em> approximation of the <em>definite</em> integral is:
y(4) ≈ 4.189 648 - 0
y(4) ≈ 4.189 648
By Euler's method the <em>numerical approximate</em> solution of the <em>definite</em> integral is 4.189 648.
To learn more on Euler's method: brainly.com/question/16807646
#SPJ1
I believe it's<span> 8cos(x)⁸ - 16cos(x)⁶ + 10cos(x)⁴ - 2cos(x)².
</span>

<span>
Alternately, you can write [</span><span><span>1 / (tan(2x) - cot(2x))] + [cos(8x) / (tan(2x) - cot(2x))].
</span></span>

<span><span>
</span></span>
Answer:
Both the parts of this question require the use of the "Intersecting Secant-Tangent Theorem".
Part A
The definition of the Intersecting Secant-Tangent Theorem is:
"If a tangent segment and a secant segment are drawn to a circle from an exterior point, then the square of the measure of the tangent segment is equal to the product of the measures of the secant segment and its external secant segment."
This, when applied to our case becomes, "The length of the secant RT, times its external segment, ST, equals the square of the tangent segment TU".
Mathematically, it can be written as:
Part B
It is given that RT = 9 in. and ST = 4 in. Thus, it is definitely possible to find the value of the length TU and it can be found using the Intersecting Secant-Tangent Theorem as:
Thus,
Thus the length of TU=6 inches