Answer:
480/(x+60) ≤ 7
Step-by-step explanation:
We can use the relations ...
time = distance/speed
distance = speed×time
speed = distance/time
to write the required inequality any of several ways.
Since the problem is posed in terms of time (7 hours) and an increase in speed (x), we can write the time inequality as ...
480/(60+x) ≤ 7
Multiplying this by the denominator gives us a distance inequality:
7(60+x) ≥ 480 . . . . . . at his desired speed, Neil will go no less than 480 miles in 7 hours
Or, we can write an inequality for the increase in speed directly:
480/7 -60 ≤ x . . . . . . x is at least the difference between the speed of 480 miles in 7 hours and the speed of 60 miles per hour
___
Any of the above inequalities will give the desired value of x.
Answer:
DB = CA (Proved)
Step-by-step explanation:
Statement 1.
∠D = ∠C, M is the midpoint of DC and ∠1 = ∠2
Reason 1.
Given
Statement 2.
Between Δ DBM and Δ CAM,
(i) DM = CM,
(ii) ∠D = ∠C and
(iii) ∠DMB = ∠CMA
Reason 2.
(i) given
(ii) given and
(iii) ∠ DMB = ∠1 + ∠AMB and ∠CMA = ∠2 + ∠AMB
Since ∠1 = ∠2, so, ∠DMB = ∠CMA.
Statement 3.
Δ DBM ≅ Δ CAM
Reason 3.
By angle-side-angle rule.
Statement 4.
DB = CA
Reason 4.
Corresponding sides of two congruent triangles. (Answer)
If triangle ABC is equilateral,solve for X56x-308