The answer would be 'First rocks formed on Earth'.
Answer:
n1 sin θ1 = n2 sin θ2 Snell's Law (θ1 is the angle of incidence)
sin θ2 = n1 / n2 * sin θ1
sin θ2 = 2.4 / 1.33 * sin θ1
sin θ2 = 1.80 * .407 = .734
θ2 = 47.2 deg
A non <span>foliated </span>rock has interlocking grains with no specific pattern.
The electric field of a very large (essentially infinitely large) plane of charge is given by:
E = σ/(2ε₀)
E is the electric field, σ is the surface charge density, and ε₀ is the electric constant.
To determine σ:
σ = Q/A
Where Q is the total charge of the sheet and A is the sheet's area. The sheet is a square with a side length d, so A = d²:
σ = Q/d²
Make this substitution in the equation for E:
E = Q/(2ε₀d²)
We see that E is inversely proportional to the square of d:
E ∝ 1/d²
The electric field at P has some magnitude E. Now we double the side length of the sheet while keeping the same amount of charge Q distributed over the sheet. By the relationship of E with d, the electric field at P must now have a quarter of its original magnitude:
<u>The two ways to find acceleration in non uniform motion are as follows:</u>
<u>Explanation:</u>
Non-uniform acceleration comprises the most common description of motion. Acceleration refers to the rate of changes of velocity per unit time. Basically, it implies that acceleration changes during motion. This variety can be communicated either as far as position (x) or time (t).
Accordingly, non-uniform acceleration motion can be carried out in 2 ways:
Calculus analysis is general and accurate, but limited to the availability of speed and acceleration expressions. It is not always possible to get the expression of motion attributes in the form "x" or "t". On the other hand, the graphic method is not accurate enough, but it can be used accurately if the graphic has the correct shapes.
The use of calculations involves differentiation and integration. Integration enables evaluation of the expression of acceleration of speed and expression of movement at a distance. Similarly, differentiation allows us to evaluate expression of speed position and expression speed to acceleration.