When you exert a force on the coin, it will accelerate. If you push the coin and it moves at a constant velocity, the friction force must be equal to the force that you are exerting. This is an example of a balanced force. When the net force is greater than 0 N, the is an unbalanced force.
Answer:
This has all the answer (Data sheet, graph, answers to the questions, and the summary) :)
The answer to this question is false.
initially coin is at rest and then it drop for total time t = 1.5 s
so here the speed of the coin at which it will hit the floor is to be find

here we know that

a = 9.8 m/s^2
t = 1.5 s
now from above equation


so it will hit the floor with speed 14.7 m/s
From a balistics pendulum as an example, which is probably where you are at...
Triangles, L = 12m, x_0 = 1.6, we need to find the angle (theta)
sin (theta) = 1.6/12 = 0.1333....
theta = ArcSin(0.1333...) = 0.1337 rad
Then, this is the height that the mass vertically raises in it's arc
y_2 = L-L*cos(theta) = 0.107 m
use y_2 in a kinematic swing...
<span><span>v=sqrt(<span><span>2g<span>y_2)</span></span></span>=1.45m/s</span></span>