Answer:
The heat needed to warm 25.3 g of copper from 22°C to 39°C is 165.59 Joules.
Explanation:

Where:
Q = heat absorbed or heat lost
c = specific heat of substance
m = Mass of the substance
ΔT = change in temperature of the substance
We have mass of copper = m = 25.3 g
Specific heat of copper = c = 0.385 J/g°C
ΔT = 39°C - 22°C = 17°C
Heat absorbed by the copper :

The heat needed to warm 25.3 g of copper from 22°C to 39°C is 165.59 Joules.
Near water, change in elevation, or change in latitude.
CATGGATCCA for future reference this is considered biology, you may get a quicker response if you categorize it as such :)
The acid dissociation constant of benzoic acid is 6.5 x 10^-5. Therefore, the pH of the benzoic acid solution prior to adding sodium benzoate is:
pH = -log[Ka]
pH = -log (6.5 x 10^-5)
pH = 4.19
The pH of the benzoic acid solution is 4.19 which is acidic, but a weak acid.
The surface waves are the type of seismic waves that produce
the most severe ground movement. This wave is slow in nature and so produces a rolling
effect similar to a surface wave in a pond. This kind of wave is far more
devastating than the P waves and the S waves. The surface waves have the
capacity to shake a building from side to side until it collapses. This kind of
wave moves in a pattern similar to a circle. It actually originates at a point
and then start moving outwards in a circle.