Copper was discovered in North Africa.
Answer:
Explanation:
given that
mass of Ba(NO3)2 = 1.40g
mass of NH2SO3H = 2.50 g
1)to determine the mole of Ba(NO3)2
2) to determine the mass of all three product formed in the reaction
reaction
Ba(NO3)2 + 2NH2SO3H → Ba(NH2SO3)2 + 2HNO3
<u>Solution</u>
we calculate the molar mass of each species by using their atomic masses
BA = 137.33g/mol
N = 14g/mol
O= 16g/mol
H = 1g/mol
S = 32g/mol
calculation
Ba(NO3)2 = Ba + 2N + 6O
= 137.33 + 2X 14 + 6 X 16
= 261.33g/mol
NH2SO3H = N + 3H + S+ 3O
=14 + 3X1 + 32 + 3X 16
= 97g/mol
Ba(NH2SO3)2 = Ba + 2N + 4H +2S +6O
= 137.33 + 2 X 14 + 4 X1 + 2X32 + 6 X 16
= 329.33g/mol
HNO3 = H + n + 3O
= 1 + 14 + 3 X 16
= 63g/mol
Answer:
See explanation
Explanation:
From the analysis we have in the question, we must look towards a first row transition metal ion having a d^6 configuration because it yields a paramagnetic complex having four unpaired electrons and a diamagnetic complex having no unpaired electrons.
We have two possible candidates in mind, Fe^2+ and Co^3+. However, Fe^2+ does not form as many coloured complexes as stated in the question so we have to eliminate that option.
We are now left with only Co^3+. Various ligands are going to cause these various colours of Co^3+ to appear in solution.
Hence, we can deduce from all these that the nature of ligands determines the colour of the complex . Don't forget that the colour of a complex arises from crystal field splitting.
The energy needs of a cell is very important because they need energy to breakdown,synthesis, and transport nutrients and molecules so an living organism can survive just like how the city needs energy to power its cities so it’s people can do what they need to do to survive. HOPE IT HELPS