Answer: The pH of the solution is 11.2
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.

where,
n = moles of solute
= volume of solution in ml
moles of
=
(1g=1000mg)
Now put all the given values in the formula of molality, we get


pH or pOH is the measure of acidity or alkalinity of a solution.
pH is calculated by taking negative logarithm of hydrogen ion concentration.
![pOH=-\log [OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%20%5BOH%5E-%5D)

According to stoichiometry,
1 mole of
gives 2 mole of
Thus 0.0298 moles of
gives =
moles of
Putting in the values:
![pOH=-\log[0.0596]=2.82](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5B0.0596%5D%3D2.82)



Thus the pH of the solution is 11.2
Answer:
See explanation below
Explanation:
The question is incomplete, cause you are not providing the structure. However, I found the question and it's attached in picture 1.
Now, according to this reaction and the product given, we can see that we have sustitution reaction. In the absence of sodium methoxide, the reaction it's no longer in basic medium, so the sustitution reaction that it's promoted here it's not an Sn2 reaction as part a), but instead a Sn1 reaction, and in this we can have the presence of carbocation. What happen here then?, well, the bromine leaves the molecule leaving a secondary carbocation there, but the neighbour carbon (The one in the cycle) has a more stable carbocation, so one atom of hydrogen from that carbon migrates to the carbon with the carbocation to stabilize that carbon, and the result is a tertiary carbocation. When this happens, the methanol can easily go there and form the product.
For question 6a, as it was stated before, the mechanism in that reaction is a Sn2, however, we can have conditions for an E2 reaction and form an alkene. This can be done, cause the extoxide can substract the atoms of hydrogens from either the carbon of the cycle or the terminal methyl of the molecule and will form two different products of elimination. The product formed in greater quantities will be the one where the negative charge is more stable, in this case, in the primary carbon of the methyl it's more stable there, so product 1 will be formed more (See picture 2)
For question 6b, same principle of 6a, when the hydrogen migrates to the 2nd carbocation to form a tertiary carbocation the methanol will promove an E1 reaction with the vecinal carbons and form two eliminations products. See picture 2 for mechanism of reaction.
True because it doesn’t count as a full number
Answer:
Approximately 22.37 days, will it take for the water to be safe to drink.
Explanation:
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
k is rate constant
Given that:- k = 0.27 (day)⁻¹
= 0.63 mg/L
mg/L
Applying in the above equation as:-



<u>Approximately 22.37 days, will it take for the water to be safe to drink.</u>
Answer: Below
|
|
^
Explanation:
The atomic theory is that all matter is made up of tiny units or particles called atoms. This theory describes the characteristics, structure and behavior of atoms as well as the components that make up atoms. Furthermore, the theory states that all elements are made up of identical atoms.
The atomic theory is a theory in the study of chemistry that states atoms are the building blocks of matter. Atoms contain protons, neutrons and electrons. Protons, which have a positive charge, and neutrons are found in the nucleus of the atom. Electrons, which have a negative charge, orbit the nucleus.
According to the atomic theory, all elements contain atoms. The difference is the number of protons, electrons and neutrons in that atom. For instance, hydrogen contains one proton and one electron but no neutrons. Oxygen, on the other hand contains eight protons, electrons and neutrons. The difference in protons, electrons and neutrons determines the stability and the other properties of any particular element. These elements are grouped according to their atomic masses, which depend on the number of protons and neutrons in each of the atoms. Because oxygen has more protons and neutrons than hydrogen, it has a higher atomic mass.