Answer:
could the answer be boil the water away?
Explanation:
if the water gets boiled and evaporates, than you are left with the solids
Answer:
The answer is indeed true
Explanation:
Answer:
It will decrease by 2 units.
Explanation:
The Henderson-Hasselbalch equation for a buffer is
pH = pKa + log(base/acid)
Let's assume your acid has pKa = 5.
(a) If the base: acid ratio is 1:1,
pH(1) = 5 + log(1/1) = 5 + log(1) = 5 + 0 = 5
(b) If the base: acid ratio is 1:100,
pH(2) = 5 + log(1/100) = 5 + log(0.01) = 5 - 2 = 3
(c) Difference
ΔpH = pH(2) - pH(1) = 5 - 3 = -2
If you increase the acid:base ratio to 100:1, the pH will decrease by two units.
By nonmetals, metals, and gases
Answer:
The solutions should be added in this order NaCl > Na2SO4 > Na2S
Explanation:
Silver is insoluble as a chloride, so the silver ions get precipitated on addition of chloride ion as silver chloride. This means Ag+ would be removed the first.
So we will add NaCl in the first step.
The following reaction will occur.
Ag+ + Cl- → AgCl(s)
Both, Pb2 and Ni are soluble as chlorides. (lead chloride is soluble as a hot solution but will ppt when colder).
When we add Na2SO4, Pb2+ will get precipitated (because it's insoluble) as PbSO4 and Ni will remain soluble as NiSO4 is soluble in water.
The reaction that will occur is:
Pb^2+ + SO4^2- → PbSO4(s)
Nickel is insoluble as a sulfide. So when we will add Na2S, nickel will be precipitated as sulfide and be able to separate and be collected.
The solutions should be added in this order NaCl > Na2SO4 > Na2S