Answer:
i think it will be warm air rises and takes heat with it eventually it cools and sinks
Explanation:
please mark me as brainliest if it helps
Ca, Sr, Ba have similar chemical properties.
Explanation: They are in the same group (Alkaline Earth Metals)
I found this....
Supraglacial Moraine
A supraglacial moraine is material on the surface of a glacier. Lateral and medial moraines can be supraglacial moraines. Supraglacial moraines are made up of rocks and earth that have fallen on the glacier from the surrounding landscape. Dust and dirt left by wind and rain become part of supraglacial moraines. Sometimes the supraglacial moraine is so heavy, it blocks the view of the ice river underneath.
If a glacier melts, supraglacial moraine is evenly distributed across a valley.
Ground Moraine
Ground moraines often show up as rolling, strangely shaped land covered in grass or other vegetation. They don’t have the sharp ridges of other moraines. A ground moraine is made of sediment that slowly builds up directly underneath a glacier by tiny streams, or as the result of a glacier meeting hills and valleys in the natural landscape. When a glacier melts, the ground moraine underneath is exposed.
Ground moraines are the most common type of moraine and can be found on every continent.
Terminal Moraine
A terminal moraine is also sometimes called an end moraine. It forms at the very end of a glacier, telling scientists today important information about the glacier and how it moved. At a terminal moraine, all the debris that was scooped up and pushed to the front of the glacier is deposited as a large clump of rocks, soil, and sediment.
Scientists study terminal moraines to see where the glacier flowed and how quickly it moved. Different rocks and minerals are located in specific places in the glacier’s path. If a mineral that is unique to one part of a landscape is present in a terminal moraine, geologists know the glacier must have flowed through that area.
Answer: The average atomic mass of the element = 88.242amu
Explanation:
The abundance of the first isotope is =35.5%
Atomic mass of first isotope = 68.9257
The average atomic mass of the first isotope =86.95amu X 35.5% =86.95amu X 0.355 =30.8725 amu
The abundance of the second isotope =64.5%
Atomic mass of the second isotope =88.95amu
The average atomic mass of second isotope =88.95amu x 64.5% = 88.95amu x 0.645= 57.37275 amu
Now the average atomic mass =30.8725 +57.37275 = 88.242amu
OR using the formulae
Average atomic mass = [mass of isotope× its abundance] + [mass of isotope× its abundance] +...[ ] / 100
{(86.95amu X 35.5 )+(88.95amu x 64.5)}/100
8,824/100
=88.24amu
The new volume of the bag will be 789.5 mL.
<u>Explanation:</u>
As per the Charles law, at constant pressure the volume of the gas is directly related to its temperature in Kelvin (K). That is as the temperature increases, the gas expands and vice-versa.

V1 = 250 ml
V2 = ?
T1 = 19° C
T2 = 60° C
Now we have to rewrite the equation to get the new volume as,
V2 = 
=
<em> </em>= 789.47 ≈ 789.5 ml.
So the new volume of the bag will be 789.5 mL.