Answer:
very small solid particles called interstellar dust.
Explanation:
In the space between the stars there is gas and dust, which represent at least 20% of the mass of our galaxy. In the Milky Way it is considered that there is a gas density of approximately 0.2 to 0.5 atoms / cm3 in the surroundings of the Sun; with respect to the dust an average of 1 g / cm3 is estimated.
Gas is about atoms and molecules, mainly hydrogen; In order of abundance, helium, carbon, oxygen, nitrogen and iron follow. On the other hand, the dust is tiny particles, generally smaller than 10 microns; the dust does not shine and therefore it is only distinguished when it is projected on bright regions (nebulae or clusters).
Interstellar matter is mainly concentrated towards the plane of the galaxy, in the strip corresponding to the Milky Way; there you can see bright nebulas of diffuse character called nebulas. These nebulae are classified according to three types: (a) bright or emission nebulae, (b) reflection nebulae and (c) planetary nebulae.
Hydrogen appears both ionized and neutral; The bright nebulae are composed of ionized hydrogen and other ionized elements. Non-ionized (neutral) hydrogen is found in the spiral arms of the Milky Way and can be detected through radio waves.
Answer:
PLEASE MARK AS BRAINLIEST!!
Explanation:
ANSWER IS IN THE IMG BELOW
friction is the resistance that one surface or object encounters when moving over another. Due to gravity pulling everything down things need to friction in order to move
i hope this helps :/
Answer:
The last graph.
Explanation:
Gravitational potential energy is the energy possessed by a body at a given height from the Earth's surface.
The formula to find the gravitational potential energy is given as:

Where, 'U' is the gravitational potential energy.
'm' is the mass of the body.
'g' is the acceleration of the body due to gravity.
'h' is the height of the body above the Earth's surface.
So, from the above equation, it is clear that, gravitational potential energy is directly proportional to the height. So, as height increases, the gravitational potential energy increases. At the surface of Earth, where, height is 0, the gravitational potential energy is also zero.
Therefore, the correct graph is a straight line with positive slope and passing through the origin. So, the last option is the correct one.
Answer:
Given that
The earth spins on its axis once a day and orbits the sun once a year (365 1/4 days)
a)
When earth spins on its axis
We know that earth take 1 day to complete one revolution around its own axis.
T= 1 day = 24 hr = 24 x 3600 s
T=86400 s
We know that
T=2π/ω
ω= 2π/T
ω= 2π/86400
ω=7.27 x 10⁻5 rad/s
b)
When earth revolve around earth
T =365 1/4 days = 365.25 days
T= 365.24 x 86400 s
T=31557600
We know that
T=2π/ω
ω= 2π/T
ω= 2π/31557600
ω=1.99 x 10⁻⁷ rad/s