Ok so if each side is 4.53 cm, we can multiply 4.53 x 4.53 x 4.53 to get the volume (since v= l x w x h). Density equals mass/volume, so
519 g/4.53 cm
114.57 g/cm^3 (since none of the units cancel)
Answer:
z = 0.8 (approx)
Explanation:
given,
Amplitude of 1 GHz incident wave in air = 20 V/m
Water has,
μr = 1
at 1 GHz, r = 80 and σ = 1 S/m.
depth of water when amplitude is down to 1 μV/m
Intrinsic impedance of air = 120 π Ω
Intrinsic impedance of water = 
Using equation to solve the problem

E(z) is the amplitude under water at z depth
E_o is the amplitude of wave on the surface of water
z is the depth under water



now ,


taking ln both side
21.07 x z = 16.81
z = 0.797
z = 0.8 (approx)
Acceleration = Change in Velocity / time
a = (v - u) / t
Where v = final velocity in m/s
u = initial velocity in m/s
t = time in seconds.
a = acceleration in m/s²
A proper record of the changes in velocity with the corresponding time would help find the acceleration.
Answer: 1.88
Explanation
Applying Snell’s Law, sin(1)/sin(2) = n(2)/n(1), where n is the index of refraction and sin 1 and 2 being of incidence and refracted respectively.
1) sin35/sin24 = n(2)/1.33
2) 1.41 = n(2)/1.33
3) n(2) = 1.41 x 1.33
4) n(2) = 1.88
Hope this helps :)
It’s just E because ethe positiv and negative current are supposed to flow thorough the bulb in opppsote sides at a equel level.In some them negerive/postive is absent and some of them are connected to the same side