<span>Answer:
Some metals have the ability to form differently charged ions. For example, iron can form
2
+
or
3
+
ions. If you simply gave the name iron chloride, you would not know which charge the iron ion possessed.
A Roman numeral is to indicate the charge of the iron.
Iron (
II
) means the iron has a
2
+
charge
Iron (
III
) means that the iron has a
3
+
charge
So, iron (
II
) oxide would have a chemical formula of
FeO
.
(The oxide ion has a
2
â’
charge to balance the
2
+
of the iron to form a neutral compound.)
Iron (
III
) oxide would have a chemical formula of
Fe
2
O
3
(Here you need to find the common multiple of 6, so two iron ions with a
3
+
charge will balance the charge of three oxide ions with a
2
+
charge.)</span>
Taking into account the definition of calorimetry, 0.0185 moles of water are required.
<h3>Calorimetry</h3>
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
Sensible heat is defined as the amount of heat that a body absorbs or releases without any changes in its physical state (phase change).
So, the equation that allows to calculate heat exchanges is:
Q = c× m× ΔT
where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
<h3>Mass of water required</h3>
In this case, you know:
Heat= 92.048 kJ
Mass of water = ?
Initial temperature of water= 34 ºC
Final temperature of water= 100 ºC
Specific heat of water = 4.186
Replacing in the expression to calculate heat exchanges:
92.048 kJ = 4.186 × m× (100 °C -34 °C)
92.048 kJ = 4.186 × m× 66 °C
m= 92.048 kJ ÷ (4.186 × 66 °C)
<u><em>m= 0.333 grams</em></u>
<h3>Moles of water required</h3>
Being the molar mass of water 18 , that is, the amount of mass that a substance contains in one mole, the moles of water required can be calculated as: