Mg3(AsO4)2
Ca(ClO4)2
[S (II) not sure]
[F (I) not sure]
PO₄³
Sorry I don’t know all of them, good luck though! :)
The best and most correct answer among the choices provided by the question is the fourth choice "alcoholic fermentation"
Ethanol fermentation<span>, also called </span>alcoholic fermentation<span>, is a biological process which converts sugars such as glucose, fructose, and sucrose into cellular energy, producing </span>ethanol<span> and carbon dioxide as a side-effect.</span>
I hope my answer has come to your help. God bless and have a nice day ahead!
Answer : The internal energy change is -2805.8 kJ/mol
Explanation :
First we have to calculate the heat gained by the calorimeter.

where,
q = heat gained = ?
c = specific heat = 
= final temperature = 
= initial temperature = 
Now put all the given values in the above formula, we get:


Now we have to calculate the enthalpy change during the reaction.

where,
= enthalpy change = ?
q = heat gained = 23.4 kJ
n = number of moles fructose = 

Therefore, the enthalpy change during the reaction is -2805.8 kJ/mole
Now we have to calculate the internal energy change for the combustion of 1.501 g of fructose.
Formula used :

or,

where,
= change in enthalpy = 
= change in internal energy = ?
= change in moles = 0 (from the reaction)
R = gas constant = 8.314 J/mol.K
T = temperature = 
Now put all the given values in the above formula, we get:




Therefore, the internal energy change is -2805.8 kJ/mol