<h3>
Answer:</h3>
0.387 J/g°C
<h3>
Explanation:</h3>
- To calculate the amount of heat absorbed or released by a substance we need to know its mass, change in temperature and its specific heat capacity.
- Then to get quantity of heat absorbed or lost we multiply mass by specific heat capacity and change in temperature.
- That is, Q = mcΔT
in our question we are given;
Mass of copper, m as 95.4 g
Initial temperature = 25 °C
Final temperature = 48 °C
Thus, change in temperature, ΔT = 23°C
Quantity of heat absorbed, Q as 849 J
We are required to calculate the specific heat capacity of copper
Rearranging the formula we get
c = Q ÷ mΔT
Therefore,
Specific heat capacity, c = 849 J ÷ (95.4 g × 23°C)
= 0.3869 J/g°C
= 0.387 J/g°C
Therefore, the specific heat capacity of copper is 0.387 J/g°C
Answer: first option is not a termination
∙CH3 + Cl2 → CH3Cl + Cl∙
Explanation:
Since a radical is formed as part of the product it means it's a propagation step and not a termination step, at termination no free radical exist as product
<span>they assign a numerical date to each rock layer studied.</span>
Answer:
rate= k[A]²[B]²[C]
Explanation:
When concentration of A is increased two times ,keeping other's concentration constant , rate of reaction becomes 4 times .
So rate is proportional to [A]²
When concentration of B is increased two times , keeping other's concentration constant,rate of reaction becomes 4 times.
So rate is proportional to [B]²
When concentration of C is increased two times , keeping other's concentration constant, rate of reaction becomes 2 times.
So rate is proportional to [C]
So rate= k[A]²[B]²[C]
What is the average velocity of atoms in 1.00 mol of argon (a monatomic gas) at 275 k for m, use 0.0399kg
Answer: The average velocity of the atoms 847.33 m/s.
Explanation:
Moles of the neon = 1.00
Temperature of the gas : 288 K
Mass of the gas = 0.01000
R = 8.31 J/mol K
The average velocity of the atoms 847.33 m/s.