<span> the </span>vapor pressure<span> of the liquid at a temperature T</span>2<span> ... Now, </span>it's<span> important to realize that the </span>normal boiling point<span> of a substance is measured at an atmoshperic ... ΔHvap=−ln(</span>134mmHg760mmHg<span> )⋅8.314J mol−1K−1 (1(273.15+</span>0)−1(273.15+40))K−1 ... Give equations that can be used tocalculate<span> the .
Now try it yourself :)</span>
The answer is 4.45 × 10²⁴ units.
To calculate this, we will use Avogadro's number which is the number of units (atoms, molecules) in 1 mole of substance:
6.02 × 10²³ units per 1 mole
So, we need a proportion:
If 6.02 × 10²³ units are in 1 mole, how many units will be in 7.40 moles:
6.02 × 10²³ units : 1 mole = x : 7.40 moles
After crossing the products:
1 mole * x = 7.40 moles * 6.02 × 10²³ units
x = 7.40 * 6.02 × 10²³ units
x = 44.5 × 10²³ units = 4.45× 10²⁴ unit
Answer:
They are pollinators of alfalfa.
Explanation:
Without them crops wouldn't be here.
Answer:-
As we can see from the graphical data,
The distance covered by all the four runners is the same 5 km.
Among the four athletes, Athlete P covers the distance in under three hours.
It is the minimum time taken among the four athletes.
Thus Athlete P covers the 5 km distance in the minimum amount of time.
We know that speed = 
Since time taken for P is minimum, his speed is the maximum. P ran the fastest.
Time taken by Q = 4.5 hours.
Speed of Q = 
= 
= 1.1 km/ hr
Time taken by R = 6 hours.
Speed of R = 
= 
= 0.8 km/ hr