Answer:
the answer is d .
Explanation:
all of these have pollutants and chemicals in them , damaging the ozone with carbon dioxide .
The most condensed state of matter is solid
The required net ionic equation is; 2H^+(aq) + 2OH^-(aq)-----> 2H2O(l)
The molecular reaction equation is;
H2SeO3(aq) + 2KOH(aq) -----> K2SeO3(aq) + 2H2O(l)
The complete ionic equation is;
2H^+(aq) + SeO3^2-(aq) + 2K^+(aq) + 2OH^-(aq)-----> 2K^+(aq) + SeO3^2-(aq) + 2H2O(l)
Net ionic equation;
2H^+(aq) + 2OH^-(aq)-----> 2H2O(l)
We can clearly see that this is a neutralization reaction hence water is the product of the net ionic equation.
Learn more:brainly.com/question/25150590
Answer:
2835 J
Explanation:
Take the specific heat capacity of water as 4.2 J/ g°C.
Energy (heat) = mass x specific heat capacity x change in temperature
(E= mcΔT)
E = 27 x 4.2 x (45-20)
E = 2835 J
Answer:
when electron emit the radiations it means it jumped to the lower energy level from higher energy level.
Explanation:
When electron jump into lower energy level from high energy level it loses the energy.
The process is called de-excitation.
Excitation:
When the energy is provided to the atom the electrons by absorbing the energy jump to the higher energy levels. This process is called excitation. The amount of energy absorbed by the electron is exactly equal to the energy difference of orbits.
De-excitation:
When the excited electron fall back to the lower energy levels the energy is released in the form of radiations. this energy is exactly equal to the energy difference between the orbits. The characteristics bright colors are due to the these emitted radiations. These emitted radiations can be seen if they are fall in the visible region of spectrum.