g(x) = (1/4)x^2 . correct option C) .
<u>Step-by-step explanation:</u>
Here we have ,
and we need to find g(x) from the graph . Let's find out:
We have ,
. From the graph we can see that g(x) is passing through point (2,1 ) . Let's substitute this point in all of the four options !
A . g(x) = (1/4x)^2
Putting (2,1) in equation g(x) = (x/4)^2 , we get :
⇒ 
⇒ 
Hence , wrong equation !
B . g(x) = 4x^2
Putting (2,1) in equation g(x) = 4x^2 , we get :
⇒ 
⇒ 
Hence , wrong equation !
C . g(x) = (1/4)x^2
Putting (2,1) in equation g(x) = (1/4)x^2 , we get :
⇒ 
⇒ 
Hence , right equation !
D . g(x) = (1/2)x^2
Putting (2,1) in equation g(x) = (1/2)x^2 , we get :
⇒ 
⇒ 
Hence , wrong equation !
Therefore , g(x) = (1/4)x^2 . correct option C) .
Answer:
24y^3-6y^2-30
Step-by-step explanation:
6y(-5-y+4y^2)
-30y-6y^2+24y^3
Put in the correct order
24y^3-6y^2-30
Answer:

Step-by-step explanation:
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The t distribution or Student’s t-distribution is a "probability distribution that is used to estimate population parameters when the sample size is small (n<30) or when the population variance is unknown".
The shape of the t distribution is determined by its degrees of freedom and when the degrees of freedom increase the t distirbution becomes a normal distribution approximately.
Data given
Confidence =0.99 or 99%
represent the significance level
n =16 represent the sample size
We don't know the population deviation 
Solution for the problem
For this case since we don't know the population deviation and our sample size is <30 we can't use the normal distribution. We neeed to use on this case the t distribution, first we need to calculate the degrees of freedom given by:

We know that
so then
and we can find on the t distribution with 15 degrees of freedom a value that accumulates 0.005 of the area on the left tail. We can use the following excel code to find it:
"=T.INV(0.005;15)" and we got
on this case since the distribution is symmetric we know that the other critical value is 
Answer:
Go to Symbolob.com
Step-by-step explanation:
Type in the equation and it will show you how to solve it and provide the answer..