Answer:
B: They are resources that are in abundant supply and can replenish themselves quickly.
Explanation:
A renewable resource is one that can be used repeatedly and does not run out because it is naturally replaced. Examples of renewable resources include solar, wind, hydro, geothermal, and biomass energy.
The molar mass of the compound:
If the solution has an osmotic pressure of 8.44 torr, then the molar mass of the unknown non-electrolyte is 223.14 g.
What is osmosis?
- Osmosis is defined as the flow of solvent molecules through semi-permeable membrane.
- Osmotic pressure is the pressure applied to stop the flow of solvent molecules.
- It is a colligative property that means osmotic pressure depends on the number of solute particles .
Therefore,
π
( for electrolytes)
Where, π= Osmotic pressure
i = Van 't Hoff factor
n= moles
R= Gaseous constant = 62.363577 L torr 
T= Temperature
V= Volume of solution
Given:
T= 298K
V= 150 mL= 0.150 L
Given mass of unknown electrolyte= 15.2 mg = 15.2 x
g
Osmotic pressure= 8.44 torr
Molar mass= ?
For non-electrolytes:
πV = n RT
πV=
RT
Calculations:
Putting the given values in the formula:
8.44 x 0.150 =15.2 x
/ M x 62.36 x 298
1.266 = 282.5/M
M = 282.5/1.266
M = 223.14 g
Therefore,
The molar mass of the unknown non-electrolyte is 223.14g.
Learn more about Osmotic pressure here,
brainly.com/question/13680877
#SPJ4
Answer:
The equilibrium constant Kc = [Fe]²*[H2O]³ / [Fe2O3][H2]³
Explanation:
Step 1: Data given
For the reaction aA + bB ⇆ cC + dD
the equilibrium constant Kc = [C]^c * [D]^d/[B]^b*[A]^a
Step 2: The balanced equation
Fe2O3(s) + 3H2(g) --> 2Fe(s) + 3H2O(g)
Step 3: Calculate the equilibrium constant Kc
Kc = [C]^c * [D]^d/[B]^b*[A]^a
⇒with [C] = [Fe]
⇒ with c = 2
⇒with [D] = [H2O]
⇒with d = 3
⇒with [A] = [Fe2O3]
⇒with a = 1
⇒with [B] = [H2]
⇒with b = 3
Kc = [C]^c * [D]^d/[B]^b*[A]^a
Kc = [Fe]²*[H2O]³ / [Fe2O3][H2]³
The equilibrium constant Kc = [Fe]²*[H2O]³ / [Fe2O3][H2]³
<span>Majorly there are four types of inter molecular forces:
Permanent dipole (like in HCl or NaCl)
Ion dipole and Ion induced dipole
Hydrogen bonding
Van der Waals forces (Keesom, Debye, and London dispersion force)</span>