I would say C is the most correct.
In D it depends on what water source you're using. Let's say it is a waterfall, then the source of the water (melting ice or a lake) may disappear in the future.
If you're using underwater "windmills" placed in the ocean, then you would expect it to last a while as the ocean will not disappear in the near future.
Explanation:
1 literThe total of water is equal to 1000.0 g of water
we need to find the molality of a solution containing 10.0 g of dissolved in Na₂S0₄1000.0 g of water
1. For that find the molar mass
Na: 2 x 22.99= 45.98
S: 32.07
O: 4 x 16= 64
The total molar mass is 142.05
We have to find the number of moles, y
To find the number of moles divide 10.0g by 142.05 g/mol.
So the number of moles is 0.0704 moles.
For the molarity, you need the number of moles divided by the volume. So, 0.0704 mol/1 L.
The molarity would end up being 0.0704 M
The molality of a solution containing 10.0 g of Na2SO4 dissolved in 1000.0 g of water is 0.0704 Mliter
Answer:
Without corals, the algae are not protected and cannot perform photosynthesis.
Answer:
The manufacturing processes for liquefied petroleum gas are designed so that the majority, if not all, of the sulfur compounds are removed. The total sulfur level is therefore considerably lower than for other crude oil-based fuels and a maximum limit for sulfur content helps to define the product more completely. The sulfur compounds that are mainly responsible for corrosion are hydrogen sulfide, carbonyl sulfide and, sometimes, elemental sulfur. Hydrogen sulfide and mercaptans have distinctive unpleasant odors. A control of the total sulfur content, hydrogen sulfide and mercaptans ensures that the product is not corrosive or nauseating. Stipulating a satisfactory copper strip test further ensures the control of the corrosion.
the fire spreading is what represents the form of heat transferring from one atom to another within an object and direct contact