1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Snezhnost [94]
2 years ago
15

A ball is thrown horizontally from the top of a tower at 30m high, and lands 15m from its base. What is the ball's initial speed

?
Physics
1 answer:
PilotLPTM [1.2K]2 years ago
5 0

Answer:

This question requires gravitational acceleration,t=(2h/g)^ 1/2,Level the initial speed is 15/t.

You might be interested in
You are on a sled at the top of a hemispherical, snowy hill of radius 13 m. You begin to slide down the hill. How fast are you m
8_murik_8 [283]

Answer:

Explanation:

There will be loss of potential energy due to loss of height and gain of kinetic energy .

loss of height = R - R cos 14 ,    R is radius of hemisphere .

R ( 1 - cos 12 )

= 13 ( 1 - .978 )

h = .286 m

loss of potential energy

= mgh

= m x 9.8 x .286

= 2.8 m

gain of kinetic energy

1/2 m v ² = mgh

v² = 2 g h

v²  = 2 x 9.8 x 2.8

v = 7.40 m /s

4 0
2 years ago
Read 2 more answers
What is the net force acting on the piano
CaHeK987 [17]

answer: 500 net force

5 0
3 years ago
When an unbalanced force acts on an object the change in the objects ____or ____ depends on the size and direction of the force
timama [110]

When an unbalanced force acts on an object the change in the object state of rest or motion depends on the size and direction of the force.

If a body is at state of rest or motion, when an unbalanced external force acts on it, its starts moving in the direction of force and magnitude of its velocity or acceleration depends on the magnitude of force applied.

7 0
3 years ago
Read 2 more answers
A horizontal pipe contains water at a pressure of 110 kPa flowing with a speed of 1.4 m/s. When the pipe narrows to one half its
Pavel [41]

Answer:

a

  v_2 =  5.6 \  m/s

b

   P_2 = 80600 \  Pa

Explanation:

From the question we are told that  

     The pressure of the water in the pipe is  P_1= 110 \  kPa  =  110 *10^{3 } \  Pa

      The speed of the water  is v_1 =  1.4 \  m/s

       The original area of the pipe is  A_1 =  \pi \frac{d^2 }{4}

       The  new area of the pipe is  A_2 = \pi *  \frac{[\frac{d}{2} ]^2}{4}  =  \pi *  \frac{\frac{d^2}{4} }{4} = \pi \frac{d^2}{16}

         

Generally the continuity equation is mathematically represented as

       A_1 *  v_1 =  A_2 * v_2

Here v_2 is the new velocity  

So

        \pi * \frac{d^2}{4}   *  1.4  = \pi * \frac{d^2}{16}   * v_2

=>     \frac{d^2}{4}   *  1.4  =  \frac{d^2}{16}   * v_2

=>    d^2    *  1.4  =  \frac{d^2}{4}   * v_2

=>    1.4  = 0.25    * v_2

=>     v_2 =  5.6 \  m/s

Generally given that the height of the original pipe and the narrower pipe are the same , then we will b making use of the  Bernoulli's equation for constant height to calculate the pressure

This is mathematically represented as

       

             P_1 + \frac{1}{2}  *  \rho *  v_1 ^2  =  P_2 + \frac{1}{2}  *  \rho *  v_2 ^2

Here \rho is the density of water with value  \rho =  1000  \  kg /m^3

             P_2 =  P_1 + \frac{1}{2} *  \rho [ v_1^2 - v_2^2 ]

=>          P_2 =  110 *10^{3} + \frac{1}{2} *  1000 *  [ 1.4 ^2 - 5.6 ^2 ]

=>          P_2 = 80600 \  Pa

4 0
2 years ago
The temperature and time t given in hours from 0 to 24 after midnight in downtown mathville is given by t=10-5 sin(pi/12 t) degr
Dvinal [7]

Answer:

T_A_v_g=9.918192559$^{\circ}C

Explanation:

The problem tell us that the temperature as function of time in downtown mathville is given by:

T(t)=10-5*sin(\frac{\pi}{12t})

The average temperature over a given interval can be calculated as:

T_a_v_g=\frac{T_o+T_f}{2}

Where:

T_o=Initial\hspace{3}temperature\\T_f=Final\hspace{3}temperature

So, the initial temperature in this case, would be the temperature at noon, and the final temperature would be the temperature at midnight:

Therefore:

T_o=T(12)=10-5*sin(\frac{\pi}{12*12}) =9.890925575$^{\circ}C

T_f=T(24)=10-5*sin(\frac{\pi}{12*24}) =9.945459543$^{\circ}C

Hence, the average temperature between noon and midnight is:

T_A_v_g=\frac{9.890925575+9.945459543}{2}=9.918192559$^{\circ}C

3 0
2 years ago
Other questions:
  • An object started at
    10·1 answer
  • Net force = ?
    14·1 answer
  • During a tug-of-war, team A pulls on team B by applying a force of 1390 N to the rope between them. How much work does team A do
    6·1 answer
  • The components of vector A are Ax = +2.2 and Ay = -6.9 , and the components of vector B are given are Bx = -6.1 and By = -2.2. W
    6·1 answer
  • If a 6V battery is connected to a light bulb whose resistance is 55,000Ω How much current will flow in the circuit?
    5·1 answer
  • Which arrow represents the centripetal acceleration?
    6·1 answer
  • NEED HELP NOW I WILL BRAINLIEST
    15·1 answer
  • Select the correct answer?
    15·1 answer
  • Engineers design a system for heating the air in a house. They want the
    15·1 answer
  • A manufacturer supplies plastic cups that are placed under the legs of the chair
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!