Answer:
V₂ = 4.34 L
Explanation:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
Given data:
Initial volume = 3.50 L
Initial pressure = 150 Kpa (150/101.325 = 1.5 atm)
Initial temperature = 330 K
Final temperature = 273 K
Final volume = ?
Final pressure = 1 atm
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 1.5 atm × 3.50 L × 273 K / 330 K × 1 atm
V₂ = 1433.3 atm .L. K / 330 k.atm
V₂ = 4.34 L
The residential end-use sector has the largest seasonal variance, with significant spikes in demand every summer and winter. Virtually all homes that have air conditioning use electricity as the main source of cooling in the summer, while winter heating needs are met by a variety of fuels. Some homes use electric resistance heating and electric heat pumps, but even homes with other heating fuels such as natural gas or fuel oil still use some electricity to power furnace fans, boiler circulation pumps, and compressors.
The commercial sector experiences less variance in electricity use, although it shows a noticeable increase in the summer and a slight increase in the winter. Compared to the residential sector, a smaller portion of commercial sector energy consumption is devoted to heating, cooling, and ventilation. However, other energy fuels beyond electricity can be used in the commercial sector to meet both heating and cooling needs. For example, some commercial buildings use natural gas-fired chillers for cooling.
The industrial sector's demand for electricity is relatively flat (with just a slight increase in the summer) because a much smaller portion of its energy consumption (electric and otherwise) is used for heating and cooling. Economic variables generally play a larger role in industrial energy use than weather-related factors. However, seasonal changes can affect industrial activity. For example, in the refining industry, different seasonal slates of petroleum products as well as different seasonal processes may affect electricity needs.
I don't get what you are saying... Can you reword it?
<span>As we know through the principle of conservation of energy, energy can neither be created nor destroyed. Therefore, the energy removed from the water in order to make it freeze is absorbed by the surroundings. This is why the surroundings in which freezing is taking place are below freezing. This is more easily illustrated in the example of condensation. If you were to hold a plate over a pot of boiling water, some of the water would give its energy to the plate and condense on its surface.</span>