It is a completely true statement that a <span>base increases the OH- ion concentration of water. The correct option among the two options that are given in the question is the first option. I hope that this is the answer that you were looking for and the answer has actually come to your desired help.</span>
Answer:
B 144.0 s is the best answer of this question
The phrase which best describes nuclear fusion is: A. the process by which small nuclei combine into a larger nucleus.
A nuclear reaction can be defined as a type of chemical reaction in which the nucleus of an atom of a radioactive chemical element is transformed by either being joined (fusion) or split (fission) with the nucleus of another atom of a radioactive chemical element and accompanied by a release of energy.
Generally, there are two (2) main types of nuclear reaction and these include:
- <u>Nuclear fission:</u> it involves the collision of a heavy atomic nucleus with a neutron, thereby causing a split and release of energy.
- <u>Nuclear fusion:</u> it involves the joining of two smaller nuclei of atoms to form a single massive or heavier (larger) nucleus with the release of energy.
In conclusion, nuclear fusion is best described as the process by which small nuclei combine into a larger nucleus, accompanied by a release of energy.
Read more: brainly.com/question/24040465
Answer:
Only changes in temperature will influence the equilibrium constant
. The system will shift in response to certain external shocks. At the new equilibrium
will still be equal to
, but the final concentrations will be different.
The question is asking for sources of the shocks that will influence the value of
. For most reversible reactions:
- External changes in the relative concentration of the products and reactants.
For some reversible reactions that involve gases:
- Changes in pressure due to volume changes.
Catalysts do not influence the value of
. See explanation.
Explanation:
.
Similar to the rate constant, the equilibrium constant
depends only on:
the standard Gibbs energy change of the reaction, and
the absolute temperature (in degrees Kelvins.)
The reversible reaction is in a dynamic equilibrium when the rate of the forward reaction is equal to the rate of the backward reaction. Reactants are constantly converted to products; products are constantly converted back to reactants. However, at equilibrium
the two processes balance each other. The concentration of each species will stay the same.
Factors that alter the rate of one reaction more than the other will disrupt the equilibrium. These factors shall change the rate of successful collisions and hence the reaction rate.
- Changes in concentration influence the number of particles per unit space.
- Changes in temperature influence both the rate of collision and the percentage of particles with sufficient energy of reaction.
For reactions that involve gases,
- Changing the volume of the container will change the concentration of gases and change the reaction rate.
However, there are cases where the number of gases particles on the reactant side and the product side are equal. Rates of the forward and backward reaction will change by the same extent. In such cases, there will not be a change in the final concentrations. Similarly, catalysts change the two rates by the same extent and will not change the final concentrations. Adding noble gases will also change the pressure. However, concentrations stay the same and the equilibrium position will not change.
You did not provide any options.