Answer: The Subtraction Property of Equality
In the problem that Jax solved he subtract 5 from both sides of the equation. This is an example of the subtraction property of equality.
The property states that if you subtract the same amount from both sides of an equation the equation remains the same.
P=2(L+W)
A=LW
given
P=62
62=2(L+W)
divide 2
31=L+W
minus W
L=31-W
sub into other one
A=LW
A=(31-W)(W)
228=31W-W^2
times -1
W^2-31W=-228
add 228 both sides
W^2-31W+228=0
factor
what 2 numbers multiply to get 228 and add to get -31
-19 and -12
(W-19)(W-12)=0
set to zero
W-19=0
W=19
W-12=0
W=12
sub back
L=31-W
L=31-12
L=19
or
L=31-19
L=12
the doorway is 12in by 19in
Answer:
<h3>perpendicular line:
y = -¹/₆
x + 4¹/₃
</h3><h3> parallel line:
y = 6x - 45
</h3>
Step-by-step explanation:
y=m₁x+b₁ ⊥ y=m₂x+b₂ ⇔ m₁×m₂ = -1
{Two lines are perpendicular if the product of theirs slopes is equal -1}
y = 6x - 7 ⇒ m₁=6
6×m₂ = -1 ⇒ m₂ = -¹/₆
The line y=-¹/₆
x+b passes through point (8, 3) so the equation:
3 = -¹/₆
×8 + b must be true
3 = -⁴/₃ + b
b = 4¹/₃
Therefore equation in slope-intercept form:
y = -¹/₆
x + 4¹/₃
y=m₁x+b₁ ║ y=m₂x+b₂ ⇔ m₁ = m₂
{Two lines are parallel if their slopes are equal}
y = 6x - 7 ⇒ m₁=6 ⇒ m₂=6
The line y=6x+b passes through point (8, 3) so the equation:
3 = 6×8 + b must be true
3 = 48 + b
b = -45
Therefore equation in slope-intercept form:
y = 6x - 45
Answer:
Bill has $21.
Step-by-step explanation:
There's $135. 84/4=21. At the same time, 21+9=30. 30+21+84=135.
X=7 What you can do is look at the first two values given, and make them x1 and y1. Then your next value here is y2.
So x1 is 14, and y1 is 3. y2 becomes 6. X2 is unknown.
Then make the formula: x1/y2 is equal to x2/y1
(You are setting two fractions equal to each other)
That makes 14/6=X/3. When we cross multiply, we find that x=7.