1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pshichka [43]
4 years ago
10

Unit 3 parallel and perpendicular lines homework 4 parallel line proofs

Mathematics
1 answer:
Alex17521 [72]4 years ago
6 0

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

You might be interested in
What is the sum of the given polynomials in standard from? (x^2 -3x) + (-2x^2+5x-3)
galben [10]

The pic will help you

Good luck:))

8 0
3 years ago
Solve the proportion t+4/t-2= 2/4
Romashka [77]

Reduce the expression by cancelling the common factors.

t+4/t−2=1/2

Find the LCD of the terms in the equation.

Tap for more steps...

2t

Multiply each term by 2t and simplify.

2t^2+8−4t=t

Solve the equation.

t= 5±i√39/4(this is a fraction btw)



3 0
3 years ago
Read 2 more answers
I need help with problems 7-13 please make your answers neat and simple
Keith_Richards [23]

Answer:

7:

A: This rotation can be described as a 90 degree rotation counterclockwise, or a 270 degree rotation clockwise about the point x = 1.

B: A'(3,1), B'(2,3), C'(-1,4)

8:

A: This rotation could be described as a 180 degree clockwise and counterclockwise rotation.

B: This translation can also be a reflection across the y-axis.

9: A reflection across the x or y-axis will preserve the figure.

10: The coordinates would be (-3,2).

11: 90 degrees clockwise

12: 180 degrees counterclockwise

13: 90 degrees counterclockwise

4 0
3 years ago
Triangle TAG is graphed as shown
solniwko [45]

Answer:

The transformation is (x,y) to (x-2,y-6)

Step-by-step explanation:

First of all, we note the coordinates of the point G

The coordinates of the point G is (2,6)

To bring this to the origin, we are looking at bringing it to the point (0,0)

To do this, we subtract 2 from the x-value and 6 from the y value

So what we have is that;

(x-2) and (y-6)

(x-2, y-6)

4 0
3 years ago
Apply the distributive property to create an equivalent expression. 6(5x-3)
e-lub [12.9K]
The equivalent expression would simply be:
30x-18

6(5x) = 30x
6(-3) = -18
3 0
3 years ago
Read 2 more answers
Other questions:
  • (2.5×10−10)(7×10−6)<br> What is the relationship between these 2 ?
    12·1 answer
  • A basement bedroom must have a window with an opening area of at least 5.7 square feet, per the International Residential Code.
    6·1 answer
  • Find the missing geometric means in this sequence.
    14·1 answer
  • Solve the equation 4x^2 - 12x = 7 algebraically for x.
    7·1 answer
  • A. Seek power series solutions of the given differential equation about the given point x0; find the recurrence relation that th
    14·1 answer
  • WILL GIVE BRAINLIEST!
    7·1 answer
  • How many sides does this shape have
    8·2 answers
  • Select the format which represents proportional relationship.
    14·2 answers
  • The vertical jump record at Teresa's school is 23 inches. On Field Day
    7·2 answers
  • You have $47 to spend on music and movie downloads Each album download costs $7 and each movie download costs $8. Write and grap
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!