1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pshichka [43]
3 years ago
10

Unit 3 parallel and perpendicular lines homework 4 parallel line proofs

Mathematics
1 answer:
Alex17521 [72]3 years ago
6 0

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

You might be interested in
A light bulb consumes 960 watt-hours per day. How many watt-hours does it consume in 3 days and 18 hours?
oksano4ka [1.4K]

960 x 3 = 2880

18/24 = 0.75

960x 0.75 = 720

2880 + 720 = 3600

7 0
3 years ago
Read 2 more answers
How do the physical and chemical properties of the elements change?
My name is Ann [436]

Answer

Step-by-step explanation: within a group

4 0
2 years ago
Read 2 more answers
Can someone help Find the surface area
ankoles [38]

Answer:

1861.39 cm²

Step-by-step explanation:

Given:

d = 15 cm

radius (r) = ½(15) = 7.5 cm

Height = 32 cm

Surface area of a cylinder = 2πrh + 2πr²

Plug in the values

Surface area = 2*π*7.5*32 + 2*π*7.5²

= 1861.39 cm²

7 0
3 years ago
I ONLY HAVE TODAY TO DO THIS!
luda_lava [24]
The answer is 2.1 if the height of the cylinder
8 0
3 years ago
Read 2 more answers
Find the area of a circle with a circumference of 6.28 units
viktelen [127]

Answer:

area of the circle = 3.14 square units

Step-by-step explanation:

Circumference of the circle formula is 2\pir

where r is the radius of the circle

given circumference = 6.28

2\pir = 6.28

Value of pi is 3.14

2*3.14 * r= 6.28

6.28 r = 6.28

divide by 6.28 on both sides

r = 1

radius = 1

Area of the circle = \pi r^2

= 3.14 *1*1 = 3.14


6 0
2 years ago
Other questions:
  • What are the steps to this
    10·1 answer
  • at a local restaurant the health inspector visits every 7 Days and the fire inspector visits every 12 days make a table for the
    9·1 answer
  • Find the area of the trapezoid by decomposing it into other shapes.
    10·2 answers
  • For f (x) = 3x +1 and g(x) = x^2-6, find (g/f)(x)
    8·1 answer
  • Solve the equation for x. Plz help
    5·1 answer
  • Find the equation of a line that contains the points (6, -7) and (8,5). Write the equation in slope-intercept form.
    7·1 answer
  • WHAT??? HELP ME PLEASE///8TH GRADE MATH
    10·1 answer
  • 1. What is the slope of (3,5) (6,0)<br> 2. What is the slope of (-2,-6) (2,-6)
    8·1 answer
  • Add or subtract. Write fractions in simplest form.
    10·1 answer
  • Please assist with the following questions​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!