1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pshichka [43]
3 years ago
10

Unit 3 parallel and perpendicular lines homework 4 parallel line proofs

Mathematics
1 answer:
Alex17521 [72]3 years ago
6 0

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

You might be interested in
Easy<br> 5<br> If 3x + 5y = 15 and x – 2y = 10, what is the value of 2x<br> +7y?
Dahasolnce [82]

Answer:

5

Step-by-step explanation:

dont really understand why you answered your own question?

5 0
3 years ago
2. Which rule defines the function in the graph shown?
Svetlanka [38]

Answer:

Function rule is option c.

7 0
3 years ago
Willie has 4 baseball caps. Two of the caps are blue. One of the caps is red and one is green. What fraction of the caps is blue
RideAnS [48]

I would say 2/4......6/12...

4 0
3 years ago
Help? I’ll give brainliest
Vaselesa [24]

9514 1404 393

Answer:

  10,466.7 in^3

Step-by-step explanation:

The volume of a cone is given by ...

  V = (1/3)πr^2·h

where r is the radius and h is the height. Using your numbers, we have ...

  V = (1/3)(3.14)(20 in)^2·(25 in) = 10,466.7 in^3

_____

A more accurate value of π will give a different result.

4 0
3 years ago
Find the inverse function of m(x) = 5x - 5 A m-1(x) = 5x + 5 B m-1(x) = -5x + 5 C m-1(x) = x+5/5 D m-1(x) = x+5/-5x
bogdanovich [222]
Hi there!

m(x) = 5x - 5
First replace m(x) by y.

y = 5x - 5
To find the inverse function we must switch the places from the variables x and y.

x = 5y - 5
Now we need to isolate the y again to find the formula of the inverse function. First add 5 to both sides.

x + 5 = 5y
Switch sides.

5y = x + 5
And finally divide both sides by 5.

y =  \frac{x + 5}{5}
And therefore we can conclude the following:

m {}^{ - 1} (x) =  \frac{x + 5}{5}
The answer is C.
~ Hope this helps you!







6 0
3 years ago
Read 2 more answers
Other questions:
  • What would you see at the wedding of Betty Crocker and the pillsbury dough boy
    10·1 answer
  • Mr.William orders 2 feet of trim to decorate pillows. If he needs 1inch of trim for each pillow, how many pillows can he decorat
    8·1 answer
  • I need help please!!!!
    7·1 answer
  • 54 divided by 7 simplified​
    6·2 answers
  • Without graphing, determine the domain.​
    13·1 answer
  • Write an expression to represent three minus the product of two and a number x
    6·1 answer
  • How many choices do you have for your lunch if you pick either an orange or apple and pretzels or carrots to go with your sandwi
    15·1 answer
  • Consider the two expressions which statement is true?<br>​
    7·1 answer
  • Someone plz help me T^T
    12·1 answer
  • What is (2x2+6x+5) - (6x2+ 3x+5) solved ?<br>​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!