1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pshichka [43]
3 years ago
10

Unit 3 parallel and perpendicular lines homework 4 parallel line proofs

Mathematics
1 answer:
Alex17521 [72]3 years ago
6 0

Answer:

1) c ║ d by consecutive interior angles theorem

2) m∠3 + m∠6 = 180° by transitive property

3) ∠2 ≅ ∠5 by definition of congruency

4) t ║ v                                    {}                   Corresponding angle theorem

5) ∠14 and ∠11  are supplementary         {}  Definition of supplementary angles

6) ∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem

Step-by-step explanation:

1) Statement                                {}                                     Reason

m∠4 + m∠7 = 180°                                 {}   Given

m∠4 ≅ m∠6                                {}              Vertically opposite angles

m∠4 = m∠6                               {}                Definition of congruency

m∠6 + m∠7 = 180°                                {}    Transitive property

m∠6 and m∠7 are supplementary     {}     Definition of supplementary angles

∴ c ║ d                               {}                       Consecutive interior angles theorem

2) Statement                                {}                                     Reason

m∠3 = m∠8                                 {}           Given

m∠8 + m∠6 = 180°                {}                 Sum of angles on a straight line

∴ m∠3 + m∠6 = 180°               {}               Transitive property

3) Statement                                {}                                     Reason

p ║ q                                 {}                    Given

∠1 ≅ ∠5                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠2 ≅ ∠1                               {}                  Alternate interior angles theorem

∠2 = ∠1                               {}                   Definition of congruency

∠2 = ∠5                                  {}               Transitive property

∠2 ≅ ∠5                                  {}              Definition of congruency.

4) Statement                                {}                                     Reason

∠1 ≅ ∠5                                  {}                Given

∠3 ≅ ∠4                               {}                  Given

∠1 = ∠5                               {}                   Definition of congruency

∠3 = ∠4                               {}                  Definition of congruency

∠5 ≅ ∠4                               {}                 Vertically opposite angles

∠5 = ∠4                               {}                  Definition of congruency

∠5 = ∠3                                  {}               Transitive property

∠1 = ∠3                                  {}                Transitive property

∠1 ≅ ∠3                                  {}                Definition of congruency.

t ║ v                                    {}                   Corresponding angle theorem

5) Statement                                {}                                     Reason

∠5 ≅ ∠16                                  {}              Given

∠2 ≅ ∠4                               {}                  Given

∠5 = ∠16                               {}                  Definition of congruency

∠2 = ∠4                               {}                   Definition of congruency

EF ║ GH                               {}                  Corresponding angle theorem

∠14 ≅ ∠16                               {}                Corresponding angles

∠14 = ∠16                               {}                 Definition of congruency

∠5 = ∠14                                  {}               Transitive property

∠5 + ∠11 = 180°                {}                       Sum of angles on a straight line

∠14 + ∠11 = 180°                                {}      Transitive property

∠14 and ∠11  are supplementary         {}  Definition of supplementary angles  

6) Statement                                {}                                     Reason

l ║ m                                 {}                      Given

∠4 ≅ ∠7                               {}                  Given

∠4 = ∠7                               {}                   Definition of congruency

∠2 ≅ ∠7                               {}                  Alternate angles

∠2 = ∠7                               {}                   Definition of congruency

∠2 = ∠4                                  {}               Transitive property

∠2 ≅ ∠4                               {}                  Definition of congruency

∠2 and ∠4 are corresponding angles   {} Definition

DA ║ EB                               {}                  Corresponding angle theorem

∠8 and ∠9  are consecutive  interior angles    {} Definition

∠8 and ∠9  are supplementary    {}        Consecutive  interior angles theorem.

You might be interested in
Help with this please
klasskru [66]
53 Degrees
53 Degrees
5 0
3 years ago
Read 2 more answers
What is the image point of (1, -3) after a translation right 5 units and up 2 units?
Natali [406]

Answer:(6, -1)

Step-by-step explanation:

8 0
3 years ago
Solve for
Varvara68 [4.7K]

Answer:

t = 1, but please check to see if I correctly interpreted your formatting.

Step-by-step explanation:

The format of the question is too confusing.

I'll assume this is the equation to be solved:

<u>16−2t=t+9+4t</u>

<u></u>

16−2t=t+9+4t

16-9 = t + 2t + 4t

7 = 7t

t = 1

7 0
2 years ago
How are geometric sequences similar to arithmetic sequences? How are they different?
ollegr [7]
The differences between arithmetic and geometric sequences is that arithmetic sequences follow terms by adding, while geometric sequences follow terms by multiplying. The similarities between arithmetic and geometric sequences is that they both follow a certain term pattern that can't be broken. There you go
3 0
3 years ago
If x is the average (arithmetic mean) of m and 9, y is the average of 2m and 15, and z is the average of 3m and 18, what is the
Gnesinka [82]

Answer:

C

Step-by-step explanation:

If x is the average (arithmetic mean) of m and 9, y is the average of 2m and 15, and z is the average of 3m and 18,

x=(m+9)/2

y=(2m+15)/2

z=(3m+18)/2

the average of x, y, and z

=(x+y+z)/3

=(m+9+2m+15+3m+18)/3

=(6m+42)/3

=2m+14

ans is C

8 0
3 years ago
Read 2 more answers
Other questions:
  • Which expression is equivalent to √2/^3√2
    7·2 answers
  • Savannah is painting a striped background for a mural on a wall that is 15 yards long. She wants a total of 96 stripes that are
    9·2 answers
  • HELP! What does X equal? WILL GIVE BRAINLIEST!
    5·1 answer
  • Negative 3 over 1 third plus 8 over 3 tenths
    8·1 answer
  • Figure ABCDE≅figure FGHIJ , AB=16 , CD=10 , and EA=12 . What is the measure of HI¯¯¯¯¯ ? Enter your answer in the box.
    13·2 answers
  • I need this immediately!! Put the equation in standard form with a positive X coefficient. Y + 6 = 3/2 ( x - 4 ) HELP!! ​
    14·2 answers
  • A cube has a volume of 8 inches.What is the length of each of the cube?
    7·2 answers
  • Jack weighed one marshmellow i weighed 7.2 grams how many would 12 marshmellows weigh
    14·2 answers
  • What is the number of possible permutations of 8 objects taken 4 at a time?
    12·1 answer
  • Ash's family is on vacation. their car is traveling at a constant of 60 miles per hour.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!