2f(x) = 2x - 4 [0, 3]3f(x) = 3x - 1 [-2, -1]9f(x) = x² [4, 5]4f(x) = 4x [5, 20]5f(x) = x² - 3 [0, 5]1f(x) = x + 10 [-5, -1]10f(x) = 10x [-3, 0]¹/₂f(x) = 0.5x - 2 [2, 4]11f(x) = 2x² + x [1, 4]-1f(x) = -x + 2 [-3, 5]Domainthe set of all reasonable input values of x for the functionRangeset of output y values for the domain of the functionAverage Rate of ChangeChange in values over a given interval.Origin(0,0) on the coordinate graphing system; where the two axes meetx-axisthe horizontal number line in the coordinate systemy-axisthe vertical number line in the coordinate systemCoordinatesany specific (x,y) in the coordinate systemx-interceptwhere the function intersects the x-axisy-interceptwhere the function intersects the y-axis; the b value in a linear functionLinear FunctionA function whose graph is a straight line, where the average rate of change (slope) is constant.Exponential FunctionA function where the average rate of change is not constant and whose input value is an exponent.Table of ValuesA table showing two sets of related numbers<span>Slope of line through the points (-2, 3) and (0,0)
m = (0 - 3) / (0 - -2) = -3/2</span><span>Average Rate of Change on the interval
[-2, 0]</span>Slope: m = "rise over run" = 2Rate of Change<span>Slope of line through the points (5, -1) and (0,0)
m = (0 - -1) / (0 - 5) = -1/5</span><span>Average Rate of Change on the interval
[0, 5]</span><span>Slope of line through the points
(0, 16) and (4, 21)
m = (21 - 16) / (4 - 0) = 5/4</span>Average Rate of Change over the interval [0,4]
Answer:
Step-by-step explanation:nsshs
You have to find X and RT by using SU as the median
Explanation: To find the median you have to list the number from least to greatest. Then the middle number is the median. Once you find the median substitute it for X.
Answer:
Vase volume is 452.16 in³
Step-by-step explanation:
The question asks for the volume of a cylinder of radius r and height h. The relevant formula is V = (pi)(r)^2*h
With h = 9 in and r = 4 in, that max volume (of water) is
V = (3.14)(4 in)^2*(9 in) = 452.`16 in³