Ek = (m*V^2) / 2 where m is mass and V is speed, then we can take this equation and manipulate it a little to isolate the speed.
Ek = mv^2 / 2 — multiply both sides by 2
2Ek = mv^2 — divide both sides by m
2Ek / m = V^2 — switch sides
V^2 = 2Ek / m — plug in values
V^2 = 2*30J / 34kg
V^2 = 60J/34kg
V^2 = 1.76 m/s — sqrt of both sides
V = sqrt(1.76)
V = 1.32m/s (roughly)
To solve this problem we will apply the principles of energy conservation. On the one hand we have that the work done by the non-conservative force is equivalent to -30J while the work done by the conservative force is 50J.
This leads to the direct conclusion that the resulting energy is 20J.
The conservative force is linked to the movement caused by the sum of the two energies, therefore there is an increase in kinetic energy. The decrease in the mechanical energy of the system is directly due to the loss given by the non-conservative force, therefore there is a decrease in mechanical energy.
Therefore the correct answer is A. Kintetic energy increases and mechanical energy decreases.
Answer:
19.01 N
Explanation:
F = Force being applied to the crate = 45 N
= Angle at which the force is being applied = 
Horizontal component of force is given by

The horizontal component of the force acting on the crate is 19.01 N.
Answer:
Transform boundaries
Explanation:
I TOOK A TEST ON THIS QUESTION
The Third law is mixed with motion and force so if you drop a bouncy ball from 10ft it will hit the ground and loose half of its motion and come back up but only reach 5ft then when it bounces again only 2.5ft then so on so forth until it has no kinetic energy left.