Answer:
The pendulum frequency is (c) the same, or very close to it
Explanation:
The simple pendulum corresponds to a simple harmonic movement, to reach this approximation in the expression of the force the sine of the angle (θ) approaches an angle value, this is only true for small angles, generally less than 15º
Sine (15th) = 0.2588
The angle in radians is 15º π / 180º = 0.26180.2588 / 0.2618
The difference between these two values is less than 1.2%
for smaller angle the difference is reduced more
Therefore, the period for both the 5º and 10º angles is almost the same
Answer:
F = - 3.56*10⁵ N
Explanation:
To attempt this question, we use the formula for the relationship between momentum and the amount of movement.
I = F t = Δp
Next, we try to find the time that the average speed in the contact is constant (v = 600m / s), so we say
v = d / t
t = d / v
Given that
m = 26 g = 26 10⁻³ kg
d = 50 mm = 50 10⁻³ m
t = d/v
t = 50 10⁻³ / 600
t = 8.33 10⁻⁵ s
F t = m v - m v₀
This is so, because the bullet bounces the speed sign after the crash is negative
F = m (v-vo) / t
F = 26*10⁻³ (-500 - 640) / 8.33*10⁻⁵
F = - 3.56*10⁵ N
The negative sign is as a result of the force exerted against the bullet
A) Work energy relation;
Work =ΔKE ; work done = Force × distance, while, Kinetic energy = 1/2 MV²
F.s = 1/2mv²
F× 4×10^-2 = 1/2 × 5 ×10^-3 × (600)²
F = 900/0.04
= 22500 N
Therefore, force is 22500 N
b) From newton's second law of motion;
F = Ma
Thus; a = F/m
= 22500/(5×10^-3)
= 4,500,000 m/s²
But v = u-at
0 = 600- 4500,000 t
t = 1.33 × 10^-4 seconds