The easiest way is to fill two very light globes, each with a different gas.
Blow globe 1 with gas from the cylinder marked with label 1, and blow glove 2 with gas from the cylinder marked with label 2.
If a globe ascends in the air, it is because its gas is less dense than air.
Inflate the globes quite enough to be sure that the mass of the rubber of the globe is not important relative to the mass of gas and so it does not change the results. If you obtain a result where the globe does not have a cliea ascending or descending motion, you can inflate more the globe and it shouuld start to rise if the gas really is less dense than air.
Answer:
Option C, The total momentum of the fragments is equal to the original momentum of the firecracker.
Explanation:
Kinetic energy of cracker cannot remain constant before and after explosion. It is so because in the process of burning and bursting some amount of kinetic energy is lost in the form of light and heat energy. While the total mass before and after the explosion remains constant due to which the momentum is conserved before and after the explosion
Hence, option C is correct
Answer;
-Economy
The condition of a country’s economy depends on its people’s ability to exchange money for goods and services.
Explanation;
Economy is the state of a country or region in terms of the production and consumption of goods and services and the supply of money.
An economy encompasses all activity related to production, consumption and trade of goods and services in an area. An economy applies to everyone from individuals to entities such as corporations and governments.
There are four different types of economies; traditional economy, market economy, command economy and mixed economy. Each type of economy has it’s own strengths and weaknesses.
This question involves the concepts of the law of conservation of momentum and velocity.
The velocity of the eight ball is "5.7 m/s".
According to the law of conservation of momentum:

where,
m₁ = mass of number three ball = 5 g
m₂ = mass of the eight ball = 6 g
u₁ = velocity of the number three ball = 3 m/s
u₂ = velocity of the eight ball = - 1 m/s (negative sign due to opposite direction)
v₁ = final velocity of the three number ball = - 5 m/s
v₂ = final velocity of the eight ball = ?
Therefore,
(5 g)(3 m/s) + (6 g)(- 1 m/s) = (5 g)(- 5 m/s) + (6 g)(v₂)

<u>v₂ = 5.7 m/s</u>
<u></u>
Learn more about the law of conservation of momentum here:
brainly.com/question/1113396?referrer=searchResults
Answer:
Force, F = 77 N
Explanation:
A child in a wagon seem to fall backward when you give the wagon a sharp pull forward. It is due to Newton's third law of motion. The forward pull on wagon is called action force and the backward force is called reaction force. These two forces are equal in magnitude but they acts in opposite direction.
We need to calculate the force is needed to accelerate a sled. It can be calculated using the formula as :
F = m × a
Where
m = mass = 55 kg
a = acceleration = 1.4 m/s²

F = 77 N
So, the force needed to accelerate a sled is 77 N. Hence, this is the required solution.