We know,
V= f× wavelength
10.5= f×0.15
f=10.5/0.15
f= 70 Hz
<span>The number in front is the number of molecules (or atoms) taking part in the (balanced) chemical reaction equation.</span>
Answer: 170.67 N
Explanation:
Given
Mass of skier is 
Height of the inclination is 
Here, the potential energy of the skier is converted into kinetic energy which is consumed by the friction force by applying a constant force that does work to stop the skier.
![\Rightarrow mgh=F\cdot x\quad \quad [\text{F=constant friction force}]\\\\\Rightarrow 82.9\times 9.8\times 20=F\cdot 95.2\\\\\Rightarrow F=\dfrac{16,248.4}{95.2}\\\\\Rightarrow F=170.67\ N](https://tex.z-dn.net/?f=%5CRightarrow%20mgh%3DF%5Ccdot%20x%5Cquad%20%5Cquad%20%5B%5Ctext%7BF%3Dconstant%20friction%20force%7D%5D%5C%5C%5C%5C%5CRightarrow%2082.9%5Ctimes%209.8%5Ctimes%2020%3DF%5Ccdot%2095.2%5C%5C%5C%5C%5CRightarrow%20F%3D%5Cdfrac%7B16%2C248.4%7D%7B95.2%7D%5C%5C%5C%5C%5CRightarrow%20F%3D170.67%5C%20N)
Thus, the horizontal friction force is 170.67 N.
Answer:
20.85 years
Explanation:
2.61 km = 2610 m
2.07 kW = 2070 W
First we need to calculate the potential energy required to take m =
kg of rain cloud to an altitude of 2610 m is

With a P = 2070 W power pump, this can be done within a time frame of

or 658037739/(60*60) = 182788 hours or 182788 / 24 = 7616 days or 7616 / 365.25 = 20.85 years
The spring has been stretched 0.701 m
Explanation:
The elastic potential energy of a spring is the potential energy stored in the spring due to its compression/stretching. It is calculated as

where
k is the spring constant
x is the elongation of the spring with respect to its equilibrium position
For the spring in this problem, we have:
E = 84.08 J (potential energy)
k = 342.25 N/m (spring constant)
Therefore, its elongation is:

Learn more about potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly