Answer:
24.47 L
Explanation:
Using the general gas law equation:
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = 0.0821 Latm/molK
T = temperature (K)
According to the provided information in this question,
P = 1.0 atm
V = ?
n = 1 mol
T = 25°C = 25 + 273 = 298K
Using PV = nRT
V = nRT ÷ P
V = 1 × 0.0821 × 298 ÷ 1
V = 24.465 ÷ 1
V = 24.465
V = 24.47 L
Ammonia is formed by a reaction between hydrogen and nitrogen as shown by the equation below.
N2(g) + 3H2(g) = 2NH3(g)
1 mole of ammonia contains 17 g
Therefore 10.78 g of ammonia are equivalent to 10.78/17 = 0.6341 moles
The mole ratio of hydrogen to ammonia is 3 : 2
Therefore, moles of hydrogen used will be 0.6341 × 3/2 = 0.9512 moles
1 mole of hydrogen is equivalent to 2 g
Thus, the mas of hydrogen will be 0.9512 moles × 2 = 1.9023 g
So its temperature will not rise, since kinetic energy of molecules remains the same. The quantity of heat absorbed or released when a substance changes its physical phase at constant temperature (e g. From solid to liquid at melting point or from liquid to gas at boiling point) is termed as its latent heat.
Answer:
Compounds between Nonmetals and Nonmetals
Compounds that consist of a nonmetal bonded to a nonmetal are commonly known as Molecular Compounds, where the element with the positive oxidation state is written first. In many cases, nonmetals form more than one binary compound, so prefixes are used to distinguish them.
Ok percent error is abs(calculated-actual)/actual(100%)
So 1.5/96 *100%