Create an equation using the formula for area of a rectangle; area = width * length
(X + 2)(x + 3) = 600
Multiply the dimensions.
X^2 + 3x + 2x +6 = 600, or simplified x^2 +5x + 6 = 600.
Subtract 600 to get the following:
X^2 + 5x - 594 = 0
Factor by x:
(X - 22)(x + 27) = 0
Solve for x
X - 22 = 0
X = 22.
Use the POSITIVE VALUE of x as you can’t have a negative area for a room.
Then substitute 22 for x to get the dimensions
(22+ 2) or 24 for length and (22+3) or 25 for width.
The larger number is 51 and the smaller number is 12. ( hope I helped) have a good day
With the concept of first in, first out method, then we
can use the formula below to solve for the number of equivalent units of
production for that period.
number of equivalent units of production
= Total number of units completed during that period (A) –
Number of units completed in process at the beginning of the period (B) +
Number of units completed at the end of the period (C)
= A – B + C
We know that,
A = 9000 units
So we solve for B and C.
B is 60% of the 500 units, therefore:
B = 0.60 * 500 = 300
C is 30% of the 600 units, therefore:
C = 0.30 * 600 = 180
Substituting the values into the equation:
number of equivalent units of production = 9000 – 300 + 180
number of equivalent units of production = 8880 units
Answer:
A. 8880
Answer:
2/12 + 3/12 + 3/12 + 2/12 + 5/12
Step-by-step explanation:
I hope I'm right
Answer:
91.02% probability of selling more than 4 properties in one week.
Step-by-step explanation:
For each property, there are only two possible outcomes. Either it is sold, or it is not. The chance of selling any one property is independent of selling another property. So we use the binomial probability distribution to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinations of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
In this problem we have that:

Compute the probability of selling more than 4 properties in one week.
Either you sell 4 or less properties in one week, or you sell more. The sum of the probabilities of these events is decimal 1. So

We want to find
. So

In which

So






So

Finally

91.02% probability of selling more than 4 properties in one week.