Answer:
- Acetic acid (CH₃COOH) and hydronium ion (H₃O⁺)
Explanation:
Hello,
In this case, based on the acid-base theory which states that acids are known as H⁺ donors, if we consider the direct reaction:

It is clear that the acetic acid is the first H⁺ donor as it losses one H⁺ to turn into the acetate ion. Moreover, if we consider the inverse reaction:

It is also clear that the hydronium ion is the second H⁺ donor as it losses one H⁺ to turn into water.
Best regards.
The symbol for xenon (xe) would be a part of the noble gas notation for the element cesium.
For writing the electronic configuration of any element by using the preceding noble gas configuration, we simply use the symbols of noble gas belongs to the previous period of that particular elements. We can't use the symbol of noble gas of same period from which the element belong.
A is the wrong option because the noble gas in the preceding period to the period from which antimony belongs is krypton.
The actual electronic configuration of antimony is as follow:
[Kr] 4d10 5s2 5p3
B is correct option because the noble gas in the preceding period to the period from which Cesium belongs is Xenon.
The actual electronic configuration of Cesium is as follow:
[Xe] 6s1
Thus, we concluded that the symbol for xenon (xe) would be a part of the noble gas notation for the element cesium.
learn more about Noble gas:
brainly.com/question/2094768
#SPJ4
V = nRT/P
V = 0.685 mol*(.0821 L*atm/K*mol)*273 K/1 atm
Answer:
Option B will require a shorter wave length of light.
Explanation:
The bonding between Ozone (O3) and Oxygen (O2) can be used to explain why the breaking of oxygen into Oxygen radicals will require a shorter wave length.
- The bond between Oxygen (O2) is a double bond while Ozone (O3) has an intermediate bond between a double bond and a single bond.
- The bond order of Oxygen (O2) is equals 2 while that of Ozone (O3) is 1.5. Since the bond order of oxygen is higher, it will require more energy to break the bond compared to breaking the Ozone (O3) bond.
- Recall that Energy is inversely proportional to wave length.
- So it will require a shorter wave length to break the Oxygen (O2) into its radicals.
Stars on the main sequence fuse hydrogen into helium via a six-stage sequence of reactions