The correct answer is:
_________________________________________________________
" F and Br , because they are in the same group" .
_________________________________________________________
Note:
_________________________________________________________
Choice [B]: "F and Br ; because they are in the same period" ; is incorrect; since "F" and "Br" are not in the same "period" (that is, "row").
______________________________________________________
Choice [C]: "Na and Mg; because they are in the same group {"column"} ; is incorrect; since: "Na" and "Mg are NOT in the same group {"column"].
_______________________________________________________
Choice [D]: "Na and Mg" ; because they are in the same period {"row"}; is incorrect. Note: "Na" and "Mg" are, in fact, in the same period {"row"}. However, as aforementioned, {Mg and Na} are not in the same group {"column".}.
Note: The similiarities in physical and chemistry properties among elements are determined and organized — or tend to be so—by "groups" {"columns"} — NOT by "periods" {rows}.
______________________________________________________
Answer:
Explanation:
the forces between the molecules are stronger in solid than in liquids
A solution is a homogeneous type of mixture of two or more substances. A solution has two parts: a solute and a solvent.
Answer:
21.8 grams.
Explanation:
Molar mass data from a modern periodic table:
How many moles of MgO will be produced if Mg is the limiting reactant?
Number of moles of Mg:
.
The ratio between the coefficient of Mg and that of MgO is 2:2. Two moles of Mg will make two moles of MgO. 0.670644 moles of MgO will be produced if Mg is the limiting reactant.
How many moles of MgO will be produced if O₂ is the limiting reactant?
Number of moles of O₂:
.
The ratio between the coefficient of O₂ and that of MgO is 1:2. One mole of O₂ will make two moles of MgO.
of MgO will be produced if O₂ is in excess.
How many moles of MgO will be produced?
0.541284 is smaller than 0.670644. Only 0.541284 moles of MgO will be produced since O₂ will run out before all 16.3 grams of Mg is consumed.
What's the mass of 0.541284 moles of MgO?
Formula mass of MgO:
.
Mass of 0.541284 moles of MgO:
.