Answer:
Explanation:
There are a total of 6 states and 3 bits in this problem. Whenever the Reset button is pressed, RESET state is called otherwise the state according to the diagram is called. For the combination to be "01011", the input sequence has to be in the same order. If 0 is pressed instead of 1 in state "010", the last state of output ending with 0 will be called and likewise in all the states that follow.
Answer:
Explanation:
First, we will find actual properties at given inlet and outlet states by the use of steam tables:
AT INLET:
At 4MPa and 350°C, from the superheated table:
h₁ = 3093.3 KJ/kg
s₁ = 6.5843 KJ/kg.K
AT OUTLET:
At P₂ = 125 KPa and steam is saturated in vapor state:
h₂ = = 2684.9 KJ/kg
Now, for the isentropic enthalpy, we have:
P₂ = 125 KPa and s₂ = s₁ = 6.5843 KJ/kg.K
Since s₂ is less than and greater than at 125 KPa. Therefore, the steam is in a saturated mixture state. So:
Now, we will find (enthalpy at the outlet for the isentropic process):
Now, the isentropic efficiency of the turbine can be given as follows:
Answer:
it is not possible to place the wires in the condui
Explanation:
given data
total area = 2.04 square inches
wires total area = 0.93 square inches
maximum fill conduit = 40%
to find out
Can it is possible place wire in conduit conduit
solution
we know maximum fill is 40%
so here first we get total area of conduit that will be
total area of conduit = 40% × 2.04
total area of conduit = 0.816 square inches
but this area is less than required area of wire that is 0.93 square inches
so we can say it is not possible to place the wires in the conduit
Moisture content is measured in terms of pounds of water per pound of air (lb water/lb air) or grains of water per pound of air (gr. of water/lb air).
Hope this helps❤
Answer:
(a) dynamic viscosity =
(b) kinematic viscosity =
Explanation:
We have given temperature T = 288.15 K
Density
According to Sutherland's Formula dynamic viscosity is given by
, here
μ = dynamic viscosity in (Pa·s) at input temperature T,
= reference viscosity in(Pa·s) at reference temperature T0,
T = input temperature in kelvin,
= reference temperature in kelvin,
C = Sutherland's constant for the gaseous material in question here C =120
= 291.15
when T = 288.15 K
For kinematic viscosity :