Answer:
Sarah is asking each department head how long they can be without their primary system. Sarah is trying to determine the Recovery Time Objective (RTO) as this is the duration of time within which the primary system must be restored after the disruption.
Recovery Point Objective is basically to determine the age of restoration or recovery point.
Business recovery and technical recovery requirements are to assess the requirements to recover by Business or technically.
Hence, Recovery Time Objective (RTO) is the correct answer.
Assumptions:
- Steady state.
- Air as working fluid.
- Ideal gas.
- Reversible process.
- Ideal Otto Cycle.
Explanation:
Otto cycle is a thermodynamic cycle widely used in automobile engines, in which an amount of gas (air) experiences changes of pressure, temperature, volume, addition of heat, and removal of heat. The cycle is composed by (following the P-V diagram):
- Intake <em>0-1</em>: the mass of working fluid is drawn into the piston at a constant pressure.
- Adiabatic compression <em>1-2</em>: the mass of working fluid is compressed isentropically from State 1 to State 2 through compression ratio (r).

- Ignition 2-3: the volume remains constant while heat is added to the mass of gas.
- Expansion 3-4: the working fluid does work on the piston due to the high pressure within it, thus the working fluid reaches the maximum volume through the compression ratio.

- Heat Rejection 4-1: heat is removed from the working fluid as the pressure drops instantaneously.
- Exhaust 1-0: the working fluid is vented to the atmosphere.
If the system produces enough work, the automobile and its occupants will propel. On the other hand, the efficiency of the Otto Cycle is defined as follows:

where:

Ideal air is the working fluid, as stated before, for which its specific heat ratio can be considered constant.

Answer:
See image attached.
Environmentally friendly
Since it focuses on are sustainable and efficient with and are made with the future in mind.
Answer:


Explanation:
Considering the one dimensional and steady state:
From Heat Conduction equation considering the above assumption:
Eq (1)
Where:
k is thermal Conductivity
is uniform thermal generation


Putt in Eq (1):

Energy balance is given by:

Eq (2)

Putting x=L


From Eq (2)

Answer:
Enthalpy of reaction (kJoules/mole)
Heat of formation of products (kJoules/mole)
Heat of reaction of reactants (kJoules/mole)
Explanation:
The general expression for calculating the overall enthalpy of reaction is given as following:
ΔH = ∑ΔH[producst] - ∑Δ[reactants]
Thus, the heat of reaction is given as the difference between the formation of the products and the formation of the reactants. The units are expressed as kJ/mol of reactants or products.
Thus, the three values are fundamental in the determination of the overall energy of the reaction from Hess' Law.