1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Igoryamba
4 years ago
7

A cylinder with a piston restrained by a linear spring contains 2 kg of carbon dioxide at 500 kPa and 400°C. It is cooled to 40°

C and 300 kPa. Calculate the heat transfer for the process.
Engineering
1 answer:
leonid [27]4 years ago
7 0

Answer:

heat transfer for the process is - 643.3 kJ

Explanation:

given data

mass m = 2 kg

pressure p1 = 500 kPa

temperature t1 = 400°C = 673.15 K

temperature t2 = 40°C = 313.15 K

pressure p2 = 300 kPa

to find out

heat transfer for the process

solution

we know here mass is constant so

m1 = m2

so by energy equation

m ( u2 - u1 ) = Q - W

Q is heat transfer

and in process  P =  A+ N that is linear spring

so

W = ∫PdV

= 0.5 ( P1+P2) ( V1 - V2)

so for case 1

P1V1 = mRT

put here value

500 V1 = 2 (0.18892) (673.15)

V1 = 0.5087 m³

and

for case 2

P2V2 = nRT

300 V2 = 2 (0.18892) (313.15)

V2 = 0.3944 m³

and

here W will be

W = 0.5 ( 500 + 300 ) ( 0.3944 - 0.5087 )

W = -45.72 kJ

and

Q is here for Cv = 0.83 from ideal gas table

Q = mCv ( T2-T1 ) + W

Q = 2 × 0.83 ( 40 - 400 ) - 45.72

Q = - 643.3 kJ

heat transfer for the process is - 643.3 kJ

You might be interested in
More discussion about seriesConnect(Ohm) function In your main(), first, construct the first circuit object, called ckt1, using
STALIN [3.7K]

Answer:

resistor.h

//circuit class template

#ifndef TEST_H

#define TEST_H

#include<iostream>

#include<string>

#include<vector>

#include<cstdlib>

#include<ctime>

#include<cmath>

using namespace std;

//Node for a resistor

struct node {

  string name;

  double resistance;

  double voltage_across;

  double power_across;

};

//Create a class Ohms

class Ohms {

//Attributes of class

private:

  vector<node> resistors;

  double voltage;

  double current;

//Member functions

public:

  //Default constructor

  Ohms();

  //Parameterized constructor

  Ohms(double);

  //Mutator for volatage

  void setVoltage(double);

  //Set a resistance

  bool setOneResistance(string, double);

  //Accessor for voltage

  double getVoltage();

  //Accessor for current

  double getCurrent();

  //Accessor for a resistor

  vector<node> getNode();

  //Sum of resistance

  double sumResist();

  //Calculate current

  bool calcCurrent();

  //Calculate voltage across

  bool calcVoltageAcross();

  //Calculate power across

  bool calcPowerAcross();

  //Calculate total power

  double calcTotalPower();

  //Display total

  void displayTotal();

  //Series connect check

  bool seriesConnect(Ohms);

  //Series connect check

  bool seriesConnect(vector<Ohms>&);

  //Overload operator

  bool operator<(Ohms);

};

#endif // !TEST_H

resistor.cpp

//Implementation of resistor.h

#include "resistor.h"

//Default constructor,set voltage 0

Ohms::Ohms() {

  voltage = 0;

}

//Parameterized constructor, set voltage as passed voltage

Ohms::Ohms(double volt) {

  voltage = volt;

}

//Mutator for volatage,set voltage as passed voltage

void Ohms::setVoltage(double volt) {

  voltage = volt;

}

//Set a resistance

bool Ohms::setOneResistance(string name, double resistance) {

  if (resistance <= 0){

      return false;

  }

  node n;

  n.name = name;

  n.resistance = resistance;

  resistors.push_back(n);

  return true;

}

//Accessor for voltage

double Ohms::getVoltage() {

  return voltage;

}

//Accessor for current

double Ohms::getCurrent() {

  return current;

}

//Accessor for a resistor

vector<node> Ohms::getNode() {

  return resistors;

}

//Sum of resistance

double Ohms::sumResist() {

  double total = 0;

  for (int i = 0; i < resistors.size(); i++) {

      total += resistors[i].resistance;

  }

  return total;

}

//Calculate current

bool Ohms::calcCurrent() {

  if (voltage <= 0 || resistors.size() == 0) {

      return false;

  }

  current = voltage / sumResist();

  return true;

}

//Calculate voltage across

bool Ohms::calcVoltageAcross() {

  if (voltage <= 0 || resistors.size() == 0) {

      return false;

  }

  double voltAcross = 0;

  for (int i = 0; i < resistors.size(); i++) {

      voltAcross += resistors[i].voltage_across;

  }

  return true;

}

//Calculate power across

bool Ohms::calcPowerAcross() {

  if (voltage <= 0 || resistors.size() == 0) {

      return false;

  }

  double powerAcross = 0;

  for (int i = 0; i < resistors.size(); i++) {

      powerAcross += resistors[i].power_across;

  }

  return true;

}

//Calculate total power

double Ohms::calcTotalPower() {

  calcCurrent();

  return voltage * current;

}

//Display total

void Ohms::displayTotal() {

  for (int i = 0; i < resistors.size(); i++) {

      cout << "ResistorName: " << resistors[i].name << ", Resistance: " << resistors[i].resistance

          << ", Voltage_Across: " << resistors[i].voltage_across << ", Power_Across: " << resistors[i].power_across << endl;

  }

}

//Series connect check

bool Ohms::seriesConnect(Ohms ohms) {

  if (ohms.getNode().size() == 0) {

      return false;

  }

  vector<node> temp = ohms.getNode();

  for (int i = 0; i < temp.size(); i++) {

      this->resistors.push_back(temp[i]);

  }

  return true;

}

//Series connect check

bool Ohms::seriesConnect(vector<Ohms>&ohms) {

  if (ohms.size() == 0) {

      return false;

  }

  for (int i = 0; i < ohms.size(); i++) {

      this->seriesConnect(ohms[i]);

  }

  return true;

}

//Overload operator

bool Ohms::operator<(Ohms ohms) {

  if (ohms.getNode().size() == 0) {

      return false;

  }

  if (this->sumResist() < ohms.sumResist()) {

      return true;

  }

  return false;

}

main.cpp

#include "resistor.h"

int main()

{

   //Set circuit voltage

  Ohms ckt1(100);

  //Loop to set resistors in circuit

  int i = 0;

  string name;

  double resistance;

  while (i < 3) {

      cout << "Enter resistor name: ";

      cin >> name;

      cout << "Enter resistance of circuit: ";

      cin >> resistance;

      //Set one resistance

      ckt1.setOneResistance(name, resistance);

      cin.ignore();

      i++;

  }

  //calculate totalpower and power consumption

  cout << "Total power consumption = " << ckt1.calcTotalPower() << endl;

  return 0;

}

Output

Enter resistor name: R1

Enter resistance of circuit: 2.5

Enter resistor name: R2

Enter resistance of circuit: 1.6

Enter resistor name: R3

Enter resistance of circuit: 1.2

Total power consumption = 1886.79

Explanation:

Note

Please add all member function details.Its difficult to figure out what each function meant to be.

8 0
3 years ago
Which option identifies the goal in the user story in the following scenario?
Naddika [18.5K]

Answer:<u>     to purchase organic jams</u>

Explanation:

I think it is

3 0
3 years ago
Read 2 more answers
Dowry practice is considered to be a social problem . justify<br>​
Artemon [7]

Answer:

mark me brailinist

Explanation:

Dowry is a social evil in the society, that has caused unimaginable tortures and crimes towards women. The evil has taken lives of women from all stratas of society - be it poor, middle class or the rich. However it is the poor who succumb and fall prey to it, more due to their lack of awareness and education.

It is because of the dowry system, that daughters are not valued as much as the sons. In the society, many a times it has been seen that they are seen as a liability and are often subjected to subjugation and are given second hand treatment may it be in education or other amenities.

Today the government has come up with many laws and reforms, not only to eradicate the dowry system, but also to uplift the status of the girl child by bringing in many schemes.

It is now for the society at large to become aware and understand the situation. It up to all of us to take active steps in bringing about the necessary change and stop either giving or taking dowry. We must all know that we should start valuing our daughters first, so that others know their value once they grow up.

7 0
2 years ago
8.17 Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 10 MPa, 4808C, and the condenser pre
katrin2010 [14]

Answer:

attached below

Explanation:

8 0
3 years ago
A large plate is at rest in water at 15?C. The plate is suddenly translated parallel to itself, at 1.5 m/s. The resulting fluid
ratelena [41]

Answer:

Answer: (a) = 3.8187m/s, (b) =24.0858m/s (c) = = 3220.071m/s

   

Explanation:

du/u² = dt = ∫du/2.3183 = ∫dt

0.4313 u = t + c

(a) t = 0, u= 15m/s, c = 0.647

u = t+c/0.4313 = t + 0.647/0.4313

(a) when t= 1   u = 1+ 0.647/0.4313 = 3.8187m/s

(b) when t= 10   u = 10 + 0.647/0.4313 = 24.0858m/s

(c)when t= 1000  u = 1000 + 0.647/0.4313 = 3220.071m/s

5 0
3 years ago
Other questions:
  • Which of the following has led to a safer and more prosperous global community within the last century? the Bronze Age composite
    13·2 answers
  • 8. Air at 25C, 100 kPa and air at 50C, 200 kPa at 1 to 1 volume ratio are mixed inside an adiabatic compressor to 55C, 500 kPa a
    15·1 answer
  • Chad is working on a design that uses the pressure of steam to control a valve in order to increase water pressure in showers. W
    10·1 answer
  • Identify the fluid property responsible for the development of the velocity boundary layer and the kinds of fluids. For the idea
    14·1 answer
  • A cubic shaped box has a side length of 1.0 ft and a mass of 10 lbm is sliding on a frictionless horizontal surface towards a 30
    11·1 answer
  • What is the relationship between the distance of the fall (height) and the formation of splines and satellite drops?
    12·1 answer
  • Given a manhole with the outlet invert elevation of 2605. A run of 48 inch pipe connects to the next manhole at an invert elevat
    8·1 answer
  • Is the science of measurement
    13·2 answers
  • If a material is found to be in the tertiary phase of creep, the following procedure should be implemented:
    8·1 answer
  • Draw a circuit diagram connected in a reverse bias showing a p-n material and a battery
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!