Answer:
stop and might even crash
Explanation:
Answer:
<h2>the answer of sols brother is correct</h2><h3>hope it helps you have a good day</h3><h2 />
Answer: 255
255 turns are required to create 25 ohms of secondary impedance.
Explanation:
Given that,
Number of turns in primary wire N₁ = 900
impedance on Primary wire Z₁ = 400 ohms
Number of turns in Secondary wire N₂ = ?
impedance on Secondary wire Z₂ = 25 ohms
we know that, the relationship between turn and impedance is
Zp / Zs = ( Np / Ns )²
(Primary impedance / secondary impedance) = Number of turns in primary wire / Number of turns in secondary wire)²
there fore
Z₁ / Z₂ = ( N₁ / N₂ )²
Now we substitute
( 400 / 25 ) = ( 900 / N₂ )²
400 / 25 = 900² / N₂²
we cross multiple to get our N₂
400 × N₂² = 900² × 25
N₂² = ( 900² × 25 ) / 400
N₂² = ( 810000 × 25 ) / 400
N₂² = 20250000 / 400
N₂² = 50625
N₂ = √50625
N₂ = 225
Therefore 255 turns are required to create 25 ohms of secondary impedance.
Answer:
0.0406 m/s
Explanation:
Given:
Diameter of the tube, D = 25 mm = 0.025 m
cross-sectional area of the tube = (π/4)D² = (π/4)(0.025)² = 4.9 × 10⁻⁴ m²
Mass flow rate = 0.01 kg/s
Now,
the mass flow rate is given as:
mass flow rate = ρAV
where,
ρ is the density of the water = 1000 kg/m³
A is the area of cross-section of the pipe
V is the average velocity through the pipe
thus,
0.01 = 1000 × 4.9 × 10⁻⁴ × V
or
V = 0.0203 m/s
also,
Reynold's number, Re = 
where,
ν is the kinematic viscosity of the water = 0.833 × 10⁻⁶ m²/s
thus,
Re = 
or
Re = 611.39 < 2000
thus,
the flow is laminar
hence,
the maximum velocity = 2 × average velocity = 2 × 0.0203 m/s
or
maximum velocity = 0.0406 m/s