Answer:
New research reveals that glycans -- branched sugar molecules found in mucus -- can prevent bacteria from communicating with each other and forming infectious biofilms, effectively rendering the microbes harmless.
Explanation:
Answer:
Lithium
Explanation:
The equation for the photoelectric effect is

where
is the energy of the incident photon, with
h being the Planck constant
c is the speed of light
is the wavelength of the photon
is the work function of the metal (the minimum energy needed to extract the photoelectron from the metal)
is the maximum kinetic energy of the emitted photoelectrons
In this problem, we have
is the wavelength of the incident photon
is the maximum kinetic energy of the electrons
First of all we can find the energy of the incident photon

Converting into electronvolts,

So now we can re-arrange the equation of the photoelectric effect to find the work function of the metal

So the metal is most likely Lithium, which has a work function of 2.5 eV.
Answer: Magnitude of the average force exerted on the glove by the other boxer is 827.86 N (approximately 828 N).
Explanation: Impulse is defined as the force acting on an object for a short period or interval of time.
Mathematically it is given by the relation:
Impulse = Force
Time
According to the numerical values given in the question, I = 202 Ns and T = 0.244 s
So, Force F =
=
= 827.86 N
Magnitude of the average force exerted on the glove by the other boxer is 827.86 N (approximately 828 N).
Answer:
Explanation:
The way to show a cubed substance is either like this³ or like this x^3. The small three is found at the bottom toolbar at the bottom of the question space marked by the Ω symbol.
100 mmHg
Givens
V1 = 20 cm^3
V2 = 80 cm^3
P1 = 400 mmHg
P2 = ?
Formula
V1 * P1 = V2 * P2
Solution
20 * 400 = 80 * P2 Divide by 80
20 * 400/80 = P2
P2 = 8000 / 80
P2 = 100 mmHg
Answer:
70 revolutions
Explanation:
We can start by the time it takes for the driver to come from 22.8m/s to full rest:

The tire angular velocity before stopping is:

Also its angular decceleration:

Using the following equation motion we can findout the angle it makes during the deceleration:

where
= 0 m/s is the final angular velocity of the car when it stops,
= 114rad/s is the initial angular velocity of the car
= 14.75 rad/s2 is the deceleration of the can, and
is the angular distance traveled, which we care looking for:

or 440/2π = 70 revelutions